系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (5): 1484-1492.doi: 10.12305/j.issn.1001-506X.2024.05.03
• 电子技术 • 上一篇
徐奕禹1, 陈长风2, 袁雪林1,*, 陈正坤1, 周志健1
收稿日期:
2022-06-19
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
袁雪林
作者简介:
徐奕禹 (1998—), 男, 硕士研究生, 主要研究方向为导航安全、卫星导航欺骗干扰检测基金资助:
Yiyu XU1, Changfeng CHEN2, Xuelin YUAN1,*, Zhengkun CHEN1, Zhijian ZHOU1
Received:
2022-06-19
Online:
2024-04-30
Published:
2024-04-30
Contact:
Xuelin YUAN
摘要:
气压高度计可以获得精确高程数据,且不受外界电磁干扰,利用气压高度计辅助全球导航卫星系统(global navigation satellite system, GNSS)进行欺骗检测具有显著优势。为了评估气压高度计在GNSS欺骗检测中的能力并提高检测概率,首先对系统误差进行建模分析,并利用差分整合移动平均自回归(autoregressive integrated moving average, ARIMA)模型对气压高度计和GNSS测量结果进行处理。同时,通过计算欧氏距离构建数据空间,提出一种基于移动方差的自适应门限检测方法。试验结果表明,在虚警率为10-6的情况下,检测率达到了92%,所提方法能够在高程信息上有效监测潜在的欺骗威胁,增强了GNSS系统的可靠性。
中图分类号:
徐奕禹, 陈长风, 袁雪林, 陈正坤, 周志健. 基于高度计辅助的GNSS欺骗干扰检测[J]. 系统工程与电子技术, 2024, 46(5): 1484-1492.
Yiyu XU, Changfeng CHEN, Xuelin YUAN, Zhengkun CHEN, Zhijian ZHOU. GNSS spoofing jamming detection based on altimeter assistance[J]. Systems Engineering and Electronics, 2024, 46(5): 1484-1492.
1 | 边少锋, 胡彦逢, 纪兵. GNSS欺骗防护技术国内外研究现状及展望[J]. 中国科学: 信息科学, 2017, 47 (3): 275- 287. |
BIAN S F , HU Y F , JI B . Research status and prospect of GNSS spoofing protection technology at home and abroad[J]. Scientia Sinica Informationis, 2017, 47 (3): 275- 287. | |
2 |
PSIAKI M L , HUMPHREYS T E . GNSS spoofing and detection[J]. Proceedings of the IEEE, 2016, 104 (6): 1258- 1270.
doi: 10.1109/JPROC.2016.2526658 |
3 |
BROUMANDAN A , LACHAPELLE G . Spoofing detection using GNSS/INS/Odometer coupling for vehicular navigation[J]. Sensors, 2018, 18 (5): 1305.
doi: 10.3390/s18051305 |
4 | KHAN A M , IQBAL N , KHAN M F . Synthetic GNSS intermediate spoofing data generation using field recorded signals[J]. MethodsX, 2018, 18 (5): 1305. |
5 |
LEE L , KWON K C , AN D S , et al. GPS spoofing detection using accelerometers and performance analysis with probability of detection[J]. International Journal of Control, Automation and Systems, 2015, 13 (4): 951- 959.
doi: 10.1007/s12555-014-0347-2 |
6 | CURRAN J T, BROUMENDAN A. On the use of low cost IMUs for GNSS spoofing detection in vehicular applications[C]// Proc. of the International Technical Symposium on Navigation and Timing, 2017. |
7 | LO S, CHEN Y H, REID T, et al. The benefits of low cost accelerometers for GNSS anti-spoofing[C]//Proc. of the ION Pacific PNT Meeting, 2017: 775-796. |
8 |
BORIO D . An experimental evaluation of global navigation sate-llite system/inertial navigation system-verification strategies for vehicular applications[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12 (3): 25- 35.
doi: 10.1109/MITS.2020.2994070 |
9 | LEE D K, PETIT M, MIRALLES D, et al. Analysis of raw GNSS measurements derived navigation solutions from mobile devices with inertial sensors[C]//Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, 2019: 3812-3831. |
10 | LEE D K, MIRALLES D, AKOS D, et al. Detection of GNSS spoofing using NMEA messages[C]//Proc. of the European Navigation Conference, 2020. |
11 | MIRALLES D, LEVIGNE N, AKOS D M, et al. Android raw GNSS measurements as the new anti-spoofing and anti-jamming solution[C]//Proc. of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation, 2018: 334-344. |
12 | 王昕. 导航接收机中气压高度计的设计与实现[D]. 西安: 中国科学院国家授时中心, 2015. |
WANG X. Design and implementation of barometric altimeter in navigation receiver[D]. Xi'an: National Time Service Center, Chinese Academy of Sciences, 2015. | |
13 |
XIA H , WANG X G , QIAO Y Y , et al. Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[J]. Sensors, 2015, 15 (4): 7857- 7877.
doi: 10.3390/s150407857 |
14 | LEE D K, NEDELKOV F, AKOS D, et al. Barometer based GNSS spoofing detection[C]//Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation, 2020: 3268-3282. |
15 |
ENGE P K . The global positioning system: signals, measurements and performance[J]. International Journal of Wireless Information Networks, 1994, 1 (2): 83- 105.
doi: 10.1007/BF02106512 |
16 |
王文益, 龚婧, 王金铭. 基于SCB方差的GNSS欺骗式干扰检测算法[J]. 系统工程与电子技术, 2021, 43 (8): 2254- 2262.
doi: 10.12305/j.issn.1001-506X.2021.08.27 |
WANG W Y , GONG J , WANG J M . GNSS spoofing inter-ference detection based on variance of SCB[J]. Systems Engineering and Electronics, 2021, 43 (8): 2254- 2262.
doi: 10.12305/j.issn.1001-506X.2021.08.27 |
|
17 |
胡远迁, 张全, 牛小骥. 基于一阶高斯-马尔可夫模型的IMU零偏相关时间对GNSS/INS组合导航结果的影响[J]. 科学技术与工程, 2018, 18 (34): 236- 241.
doi: 10.3969/j.issn.1671-1815.2018.34.035 |
HU Y Q , ZHANG Q , NIU X J . Influence of IMU zero partial correlation time based on first-order Gauss-Markov model on GNSS/INS integrated navigation results[J]. Science Technology and Engineering, 2018, 18 (34): 236- 241.
doi: 10.3969/j.issn.1671-1815.2018.34.035 |
|
18 |
RAVEH D E . CFD-based models of aerodynamic gust response[J]. Journal of Aircraft, 2007, 44 (3): 888- 897.
doi: 10.2514/1.25498 |
19 |
NASSAR S , EL-SHEIMY N . A combined algorithm of improving INS error modeling and sensor measurements for accurate INS/GPS navigation[J]. GPS Solutions, 2006, 10 (1): 29- 39.
doi: 10.1007/s10291-005-0149-3 |
20 | QIN H T, ZHANG H T, NIU Y J, et al. Altitude data fusion algorithm based on INS and GNSS and barometer[C]//Proc. of the IEEE 3rd International Conference on Civil Aviation Safety and Information Technology, 2021: 85-90. |
21 | LIU X X, ZHAO X B, PANG C L. Research on SINS/GNSS/CNS/pressure altimeter federated filtering adaptive fault tole-rance method[C]//Proc. of the China Satellite Navigation Conference, 2022: 444-454. |
22 |
YE L Y , YANG Y K , MA J G , et al. A distributed formation joint network navigation and positioning algorithm[J]. Mathematics, 2022, 10 (10): 1627.
doi: 10.3390/math10101627 |
23 |
DREVELLE V , BONNIFAIT P . A set-membership approach for high integrity height-aided satellite positioning[J]. GPS Solutions, 2011, 15 (4): 357- 368.
doi: 10.1007/s10291-010-0195-3 |
24 | YUN J, PARK B. A technique for finding indoor rescuer using GNSS and barometer sensors on android smart phones in building disaster situations[C]//Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2021: 1961-1980. |
25 |
WU P , FENG L , TONG H B , et al. Approximate position estimation method of weak-signal receiver of global navigation satellite systems assisted by barometric altimeter[J]. Traitement du Signal, 2022, 39 (3): 945- 950.
doi: 10.18280/ts.390321 |
26 | GUO H, WEI D Y, OUYANG G Z, et al. Research on barometric altimeter assisting GNSS navigation for urban environments[C]//Proc. of the China Satellite Navigation Conference, 2018: 799-811. |
27 | SIMONETTI M, CRESPILLO O G. Robust modeling of geodetic altitude from barometric altimeter and weather data[C]//Proc. of the 34th International Technical Meeting of the Sate-llite Division of the Institute of Navigation, 2021: 1176-1189. |
28 | 鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016. |
LU Y . The principle and realization technology of BDS/GPS dual-mode software receiver[M]. Beijing: Publishing House of Electronics Industry, 2016. | |
29 |
BENVENUTO D , GIOVANETTI M , VASS-ALLO L , et al. Application of the ARIMA model on the COVID-2019 epidemic dataset[J]. Data in Brief, 2020, 29, 105340.
doi: 10.1016/j.dib.2020.105340 |
30 |
SUN C , WAYN C J , DEMPSTER A G , et al. Moving variance-based signal quality monitoring method for spoofing detection[J]. GPS Solutions, 2018, 22 (3): 83.
doi: 10.1007/s10291-018-0745-7 |
31 |
HAND D J , TILL R J . A simple generalisation of the area under the ROC curve for multiple class classification problems[J]. Machine Learning, 2001, 45 (2): 171- 186.
doi: 10.1023/A:1010920819831 |
32 |
ZHU X F , HUA T , YANG F , et al. Global positioning system spoofing detection based on support vector machines[J]. IET Radar, Sonar Navigation, 2022, 16 (2): 224- 237.
doi: 10.1049/rsn2.12178 |
[1] | 周红进, 宋辉, 范文良, 王苏, 谷东亮. 基于贝叶斯神经网络的船用惯导定位修正方法[J]. 系统工程与电子技术, 2024, 46(4): 1393-1400. |
[2] | 陈林, 靳云迪, 黄杰, 林静然, 张亚乾. 基于副峰叠加的BOC导航信号捕获算法[J]. 系统工程与电子技术, 2023, 45(7): 2211-2219. |
[3] | 杨倩倩, 贺成艳, 王鹏博, 韩子彬. 传输通道相位失真对非恒包络信号质量的影响分析[J]. 系统工程与电子技术, 2023, 45(6): 1597-1605. |
[4] | 余德荧, 李厚朴, 纪兵, 边少锋. 基于灰狼优化算法的快速选星方法[J]. 系统工程与电子技术, 2023, 45(5): 1489-1495. |
[5] | 宋捷, 鲁祖坤, 刘哲, 肖志斌, 党超, 王芝应, 孙广富. 卫星导航时域自适应抗干扰技术综述[J]. 系统工程与电子技术, 2023, 45(4): 1164-1176. |
[6] | 刘鹏, 王盾, 彭博. 面向线性调频干扰的空频自适应处理算法[J]. 系统工程与电子技术, 2023, 45(12): 3772-3780. |
[7] | 高威, 李亚峰, 王可东. 信号级GNSS/SINS超紧组合导航仿真平台设计[J]. 系统工程与电子技术, 2023, 45(1): 184-192. |
[8] | 高利春, 高铭阳, 陈晓芳, 饶建兵, 费泽松, 倪少杰. 基于SINS/GBAS组合导航的高精度进近着陆导航技术[J]. 系统工程与电子技术, 2023, 45(1): 210-220. |
[9] | 常浩伟, 庞春雷, 郭泽辉, 张良, 吕敏敏, 张闯. 基于自适应免疫算法的欺骗信号检测方法[J]. 系统工程与电子技术, 2022, 44(8): 2419-2426. |
[10] | 王鹏博, 贺成艳, 杨倩倩, 佟文华. 窄带干扰信号对北斗三号B2信号质量的影响[J]. 系统工程与电子技术, 2022, 44(7): 2286-2292. |
[11] | 付栋, 彭竞, 马明, 陈飞强, 欧钢. 基于钟差检验的GNSS授时欺骗检测与识别[J]. 系统工程与电子技术, 2022, 44(3): 948-955. |
[12] | 袁赫良, 金天, 曲家庆, 吕红丽. 旋转条件下非连续卫星导航信号处理技术[J]. 系统工程与电子技术, 2021, 43(9): 2573-2580. |
[13] | 张庆龙, 王玉明, 程二威, 陈亚洲, 马立云. 导航接收机带外电磁干扰的效应规律及预测方法研究[J]. 系统工程与电子技术, 2021, 43(9): 2588-2593. |
[14] | 刘睿, 杨志伟, 陈奇东, 廖桂生, 甄卫民. 基于信号传播修正的GNSS干扰源质心定位方法[J]. 系统工程与电子技术, 2021, 43(8): 2083-2089. |
[15] | 王文益, 龚婧, 王金铭. 基于SCB方差的GNSS欺骗式干扰检测算法[J]. 系统工程与电子技术, 2021, 43(8): 2254-2262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||