系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1309-1319.doi: 10.12305/j.issn.1001-506X.2024.04.19
赵潞1,*, 方志耕1, 于亮2, 张亚东1, 邱玺睿1, 华晨晨1
收稿日期:
2022-10-26
出版日期:
2024-03-25
发布日期:
2024-03-25
通讯作者:
赵潞
作者简介:
赵潞 (1999—), 男, 硕士研究生, 主要研究方向为复杂装备成本管理与控制Lu ZHAO1,*, Zhigeng FANG1, Liang YU2, Yadong ZHANG1, Xirui QIU1, Chenchen HUA1
Received:
2022-10-26
Online:
2024-03-25
Published:
2024-03-25
Contact:
Lu ZHAO
摘要:
费用预测是复杂装备成本管理的核心内容。在同类型复杂装备仅有少量样本信息的情况下, 为提高估算预测精度, 解决贫信息下费用影响要素筛选困难、要素间由于协同效应导致的权重分配不合理、费用预测误差较大等问题, 提出了一种基于灰色关联协同效应贡献度分配的要素权重配置方法。首先通过灰色关联度分析筛选相似样本及费用关键影响要素; 然后, 依据各要素在协同效应下对灰色关联度提高的贡献程度大小, 参考Shapley值思想计算各要素的灰色比较关联重要性, 以此确定权重; 最后, 构建相应的异阶参数灰色分数阶预测模型, 对目标装备进行费用预测。通过与已有文献中的方法进行对比, 结果表明所提方法有较高的预测精度且具有一定的适用性, 能够挖掘小样本下费用影响要素间的潜在信息, 更可以合理地分配要素权重, 提高费用预测精度。
中图分类号:
赵潞, 方志耕, 于亮, 张亚东, 邱玺睿, 华晨晨. 基于灰色关联协同效应权重配置的费用预测模型[J]. 系统工程与电子技术, 2024, 46(4): 1309-1319.
Lu ZHAO, Zhigeng FANG, Liang YU, Yadong ZHANG, Xirui QIU, Chenchen HUA. Cost prediction model based on grey relational synergistic effect weight allocation[J]. Systems Engineering and Electronics, 2024, 46(4): 1309-1319.
表2
各型号民用飞机成本费用与相关参数"
机型 | 成本费用/百万元 | 最大起飞重量/t | 巡航速度/(km/h) | 发动机最大推力/t | 最大升限/英尺 | 最大载油量/L | 机身长度/英尺 |
1 | 32.0 | 65.09 | 0.79 | 26.3 | 11 280 | 17 800 | 102 |
2 | 65.2 | 85.13 | 0.78 | 27.3 | 12 500 | 29 660 | 138 |
3 | 200.2 | 395.00 | 0.84 | 63.3 | 11 680 | 216 840 | 211 |
4 | 174.6 | 230.00 | 0.84 | 77.2 | 12 500 | 117 340 | 208 |
5 | 122.2 | 163.00 | 0.85 | 53.1 | 13 000 | 120 000 | 186 |
6 | 144.7 | 257.00 | 0.82 | 72.0 | 12 800 | 139 100 | 192 |
7 | 261.9 | 560.00 | 0.85 | 70.0 | 13 100 | 310 000 | 239 |
8 | 61.5 | 73.50 | 0.78 | 27.0 | 12 000 | 29 680 | 123 |
9 | 172.4 | 257.00 | 0.82 | 34.0 | 12 800 | 139 100 | 208 |
表3
各型号民用飞机成本费用与相关参数处理表"
机型 | 成本费用/百万元 | 最大起飞重量/t | 巡航速度/(km/h) | 发动机最大推力/t | 最大升限/英尺 | 最大载油量/L | 机身长度/英尺 |
1 | 0.223 8 | 0.284 7 | 0.964 9 | 0.505 5 | 0.912 8 | 0.145 2 | 0.583 3 |
2 | 0.456 0 | 0.372 4 | 0.952 7 | 0.524 7 | 1.011 5 | 0.242 0 | 0.789 1 |
3 | 1.400 3 | 1.728 0 | 1.026 0 | 1.216 7 | 0.945 2 | 1.769 4 | 1.206 6 |
4 | 1.221 2 | 1.006 2 | 1.026 0 | 1.483 9 | 1.011 5 | 0.957 5 | 1.189 4 |
5 | 0.854 7 | 0.713 1 | 1.038 2 | 1.020 7 | 1.052 0 | 0.979 2 | 1.063 6 |
6 | 1.012 1 | 1.124 3 | 1.001 5 | 1.384 0 | 1.035 8 | 1.135 0 | 1.097 9 |
7 | 1.831 8 | 2.449 8 | 1.038 2 | 1.345 5 | 1.060 1 | 2.529 5 | 1.366 7 |
8 | 61.500 0 | 0.321 5 | 0.952 7 | 0.519 0 | 0.971 1 | 0.242 2 | 0.703 4 |
表4
型号8灰色关联度排序表"
机型 | 成本费用/百万元 | 最大起飞重量/t | 巡航速度/(km/h) | 发动机最大推力/t | 最大升限/英尺 | 最大载油量/L | 机身长度/英尺 | 灰色关联度 |
7 | 261.9 | 560.00 | 0.85 | 70.0 | 13 100 | 310 000 | 239 | 0.625 8 |
3 | 200.2 | 395.00 | 0.84 | 63.3 | 11 680 | 216 840 | 211 | 0.685 0 |
6 | 144.7 | 257.00 | 0.82 | 72.0 | 12 800 | 139 100 | 192 | 0.727 9 |
4 | 174.6 | 230.00 | 0.84 | 77.2 | 12 500 | 117 340 | 208 | 0.731 8 |
5 | 122.2 | 163.00 | 0.85 | 53.1 | 13 000 | 120 000 | 186 | 0.778 8 |
1 | 32.0 | 65.09 | 0.79 | 26.3 | 11 280 | 17 800 | 102 | 0.954 2 |
2 | 65.2 | 85.13 | 0.78 | 27.3 | 12 500 | 29 660 | 138 | 0.974 7 |
表5
筛选排序数据处理表"
机型 | 成本费用/百万元 | 最大起飞重量/t | 巡航速度/(km/h) | 发动机最大推力/t | 最大升限/英尺 | 最大载油量/L | 机身长度/英尺 |
7 | 1.831 8 | 2.233 3 | 1.031 2 | 1.259 0 | 1.055 7 | 2.282 4 | 1.311 1 |
3 | 1.400 3 | 1.575 3 | 1.019 1 | 1.138 5 | 0.941 3 | 1.596 5 | 1.157 5 |
6 | 1.012 1 | 1.024 9 | 0.994 8 | 1.295 0 | 1.031 5 | 1.024 1 | 1.053 3 |
4 | 1.221 2 | 0.917 3 | 1.019 1 | 1.388 5 | 1.007 4 | 0.863 9 | 1.141 1 |
5 | 0.854 7 | 0.650 1 | 1.031 2 | 0.955 0 | 1.047 7 | 0.883 5 | 1.020 4 |
1 | 0.223 8 | 0.259 6 | 0.958 4 | 0.473 0 | 0.909 0 | 0.131 1 | 0.559 6 |
2 | 0.456 0 | 0.339 5 | 0.946 3 | 0.491 0 | 1.007 4 | 0.218 4 | 0.757 1 |
表7
要素1灰色比较关联重要性计算表"
s | {1} | {1, 2} | {1, 3} | {1, 4} | {1, 2, 3} | {1, 2, 4} | {1, 3, 4} | {1, 2, 3, 4} |
v(s) | 0.695 4 | 0.738 8 | 0 | 0.824 3 | 0 | 0 | 0 | 0 |
v(s\i) | 0 | 0.567 1 | 0 | 0.616 8 | 0 | 0 | 0 | 0 |
v(s)-v(s\i) | 0.695 4 | 0.171 7 | 0 | 0.207 4 | 0 | 0 | 0 | 0 |
|s| | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 |
w(|s|) | 1/4 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/4 |
w(|s|)[v(s)-v(s\i)] | 0.173 8 | 0.014 3 | 0 | 0.017 3 | 0 | 0 | 0 | 0 |
表8
多元线性回归模型、GM(0, N)模型、GM(0, N)-BP组合模型与本文模型拟合预测效果检验表"
机型 | 实际成本费用/百万元 | 多元线性回归模型 | 灰色GM(0, N)模型 | GM(0, N)-BP组合模型 | 本文模型 | |||||||
拟合或预测值 | 相对误差/% | 拟合或预测值 | 相对误差/% | 拟合或预测值 | 相对误差/% | 拟合或预测值 | 相对误差/% | |||||
1 | 32.00 | 32.09 | 0.29 | 32.00 | 0.00 | 31.99 | 0.00 | 29.93 | -6.48 | |||
2 | 65.20 | 65.60 | 0.61 | 70.04 | 7.42 | 65.20 | 0.00 | 67.08 | 2.88 | |||
3 | 200.20 | 206.14 | 2.97 | 196.83 | -1.68 | 200.19 | 0.00 | 201.63 | 0.71 | |||
4 | 174.60 | 177.58 | 1.71 | 166.68 | -4.54 | 174.59 | -0.01 | 174.03 | -0.33 | |||
5 | 122.20 | 125.24 | 2.49 | 114.21 | -6.54 | 122.19 | -0.01 | 122.34 | 0.11 | |||
6 | 144.72 | 148.33 | 2.49 | 164.70 | 13.81 | 144.72 | 0.00 | 144.08 | -0.43 | |||
7 | 261.92 | 270.56 | 3.30 | 253.30 | -3.29 | 261.92 | 0.00 | 261.92 | 0.00 | |||
8 | 61.52 | 42.47 | -30.97 | 56.30 | -8.48 | 57.01 | -7.33 | 55.62 | -9.56 | |||
9 | 172.40 | 176.49 | 2.37 | 94.88 | -44.97 | 144.87 | -15.97 | 172.93 | 0.31 |
表11
型号8灰色关联度排序表"
机型 | 成本费用/百万元 | 最大起飞重量/t | 巡航速度/(km/h) | 发动机最大推力/t | 最大升限/英尺 | 最大载油量/L | 机身长度/英尺 | 灰色关联度 |
7 | 261.9 | 560.00 | 0.85 | 70.0 | 13 100 | 310 000 | 239 | 0.618 5 |
3 | 200.2 | 395.00 | 0.84 | 63.3 | 11 680 | 216 840 | 211 | 0.678 9 |
6 | 144.7 | 257.00 | 0.82 | 72.0 | 12 800 | 139 100 | 192 | 0.721 7 |
4 | 174.6 | 230.00 | 0.84 | 77.2 | 12 500 | 117 340 | 208 | 0.725 4 |
5 | 122.2 | 163.00 | 0.85 | 53.1 | 13 000 | 120 000 | 186 | 0.772 5 |
2 | 65.2 | 85.13 | 0.78 | 27.3 | 12 500 | 29 660 | 138 | 0.973 3 |
8 | 61.5 | 73.50 | 0.78 | 27.0 | 12 000 | 29 680 | 123 | - |
表13
型号8灰色关联度排序表"
机型 | 成本费用/百万元 | 最大起飞重量/t | 巡航速度/(km/h) | 发动机最大推力/t | 最大升限/英尺 | 最大载油量/L | 机身长度/英尺 | 灰色关联度 |
3 | 200.2 | 395.00 | 0.84 | 63.3 | 11 680 | 216 840 | 211 | 0.689 9 |
6 | 144.7 | 257.00 | 0.82 | 72.0 | 12 800 | 139 100 | 192 | 0.732 8 |
4 | 174.6 | 230.00 | 0.84 | 77.2 | 12 500 | 117 340 | 208 | 0.736 8 |
5 | 122.2 | 163.00 | 0.85 | 53.1 | 13 000 | 120 000 | 186 | 0.783 9 |
1 | 32.0 | 65.09 | 0.79 | 26.3 | 11 280 | 17 800 | 102 | 0.955 9 |
2 | 65.2 | 85.13 | 0.78 | 27.3 | 12 500 | 29 660 | 138 | 0.975 9 |
10 | 63.4 | 78.90 | 0.78 | 27.0 | 12 400 | 29 640 | 128 | 0.988 6 |
8 | 61.5 | 73.50 | 0.78 | 27.0 | 12 000 | 29 680 | 123 | - |
1 |
李成, 吴斌. 面向大型复杂装备制造的企业级集成质量系统[J]. 系统工程, 2012, 30 (6): 117- 121.
doi: 10.3969/j.issn.1001-2362.2012.06.057 |
LI C , WU B . Integrated quality system for large-scale complex equipment manufacturing[J]. Systems Engineering, 2012, 30 (6): 117- 121.
doi: 10.3969/j.issn.1001-2362.2012.06.057 |
|
2 | GUO X J , LIU S F , YANG Y J , et al. Grey self-memory combined model for complex equipment cost estimation[J]. Journal of Gery System, 2017, 29 (1): 78- 91. |
3 | LIU S B , YIN C W , CAO D Z . Weapon equipment management cost prediction based on forgetting factor recursive GM (1, 1) model[J]. Grey Systems: Theory and Application, 2020, 10 (1): 38- 45. |
4 | CHEN Y H , HU P , ZHANG D . Predication of life cycle cost of equipment base on unbiased grey Markov models[J]. MATEC Web of Conferences, 2020, 309 (1): 05005. |
5 | 王骏, 罗鹏程, 周经伦, 等. 军用飞机出厂费用估算方法研究进展综述[J]. 系统工程与电子技术, 2017, 39 (9): 2012- 2021. |
WANG J , LUO P C , ZHOU J L , et al. Survey on military aircraft fly-away cost estimation methons[J]. Systems Engineering and Electronics, 2017, 39 (9): 2012- 2021. | |
6 | 王景玫, 郭鹏. 基于TRL和SVM的航天型号研制成本预测研究[J]. 航空制造技术, 2015, (Z2): 97- 102. |
WANG J M , GUO P . Research on aerospace product development cost prediction based on TRL and SVM[J]. Aeronautical Manufacturing Technology, 2015, (Z2): 97- 102. | |
7 |
ZHANG Y J , CAO K , LIANG K , et al. A serialized civil aircraft R&D cost estimation model considering commonality based on BP algorithm[J]. Chinese Journal of Aeronautics, 2022, 35 (4): 253- 265.
doi: 10.1016/j.cja.2021.04.013 |
8 | 蔡伟宁, 方卫国. 飞机研制费用的组合预测方法[J]. 系统工程与电子技术, 2014, 36 (8): 1573- 1579. |
CAI W N , FANG W G . Combination forecasting methon for development cost of aircraft[J]. Systems Engineering and Electronics, 2014, 36 (8): 1573- 1579. | |
9 |
JIANG H , HU Y C , LIN J Y , et al. Analyzing China's OFDI using a novel multivariate grey prediction model with Fourier series[J]. International Journal of Intelligent Computing and Cybernetics, 2019, 12 (3): 352- 371.
doi: 10.1108/IJICC-07-2018-0095 |
10 | 袁泉, 曾祥艳. 基于新息优先累积法的GM(0, N)模型及其应用[J]. 统计与决策, 2018, 34 (12): 79- 81. |
YUAN Q , ZENG X Y . GM(0, N) model based on the new information-first accumulation method and its application[J]. Statistics & Decision, 2018, 34 (12): 79- 81. | |
11 | 吴利丰, 刘思峰, 方世力, 等. 相似信息优先的复杂装备费用测算模型[J]. 系统工程与电子技术, 2014, 36 (10): 2024- 2028. |
WU L F , LIU S F , FANG S L , et al. Complicated equipment cost estimation model with similarity information priority[J]. Systems Engineering and Electronics, 2014, 36 (10): 2024- 2028. | |
12 | 吴利丰, 于亮, 文朝霞. 预测复杂装备研制费用的GM(0, N)模型[J]. 中国管理科学, 2019, 27 (7): 203- 207. |
WU L F , YU L , WEN Z X . GM(0, N) model for its application on forecasting the development cost of complicated equipment[J]. Chinese Journal of Management Science, 2019, 27 (7): 203- 207. | |
13 |
TIAN M , CAO Y , XIE N M , et al. IN-GM (0, N) cost forecasting model of commercial aircraft based on interval grey numbers[J]. Kybernetes, 2012, 41 (7/8): 886- 896.
doi: 10.1108/03684921211257739 |
14 |
CHEN H Z , FAN K F , FANG Z G . Research on complex product cost estimation based on the N-GM (0, N) model[J]. Grey Systems: Theory and Application, 2013, 3 (1): 46- 59.
doi: 10.1108/20439371311293697 |
15 |
CHEN X N , HUANG J , YI M X , et al. Prediction of the development cost of commercial aviation aircraft[J]. Aircraft Engineering and Aerospace Technology, 2019, 91 (4): 567- 574.
doi: 10.1108/AEAT-09-2018-0248 |
16 |
CHEN X N , HUANG J , YI M X . Cost estimation for general aviation aircrafts using regression models and variable importance in projection analysis[J]. Journal of Cleaner Production, 2020, 256, 120648- 120672.
doi: 10.1016/j.jclepro.2020.120648 |
17 | 魏东涛, 刘晓东, 丁刚, 等. 基于熵理论的复杂装备费用测算模型[J]. 北京航空航天大学学报, 2022, 48 (5): 816- 823. |
WEI D T , LIU X D , DING G , et al. Complex equipment cost estimation model based on entropy theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (5): 816- 823. | |
18 | 刘凤华, 谢乃明. 小样本、贫信息下民用飞机费用估算模型及算法[J]. 系统仿真学报, 2014, 26 (3): 687- 691. |
LIU F H , XIE N M . Civilian aircraft cost estimation model and algorithm based on small sample and poor information[J]. Journal of System Simulation, 2014, 26 (3): 687- 691. | |
19 | YIN S M, XIE N M, HU C Z. Development cost estimation of civil aircraft based on combination model of GM (1, N) and MLP neural network[C]//Proc. of the IEEE International Conference on Grey Systems and Intelligent Services, 2015: 312-317. |
20 |
XIE N M , YIN S M , HU C Z . Estimating a civil aircraft's development cost with a GM (1, N) model and an MLP neural network[J]. Grey Systems: Theory and Application, 2017, 7 (1): 2- 18.
doi: 10.1108/GS-11-2016-0049 |
21 |
CHEN X N , HUANG J , YI M X . Development cost prediction of general aviation aircraft projects with parametric modeling[J]. Chinese Journal of Aeronautics, 2019, 32 (6): 1465- 1471.
doi: 10.1016/j.cja.2019.03.024 |
22 |
LEE J F , LEE H S , PARK M , et al. Early-stage cost estimation model for power generation project with limited historical data[J]. Engineering Construction and Architectural Management, 2022, 29 (7): 2599- 2614.
doi: 10.1108/ECAM-04-2020-0261 |
23 | 吴利丰, 刘思峰, 姚立根. 基于分数阶累加的离散灰色模型[J]. 系统工程理论与实践, 2014, 34 (7): 1822- 1827. |
WU L F , LIU S F , YAO L G . Discrete grey model based on fractional order accumulate[J]. System Engineering Theory and Practice, 2014, 34 (7): 1822- 1827. | |
24 | 孟伟. 基于分数阶拓展算子的灰色预测模型[D]. 南京: 南京航空航天大学, 2015. |
MENG W. Grey prediction modeling based on fractional order operators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. | |
25 | 吴利丰. 分数阶灰色预测模型及其应用研究[D]. 南京: 南京航空航天大学, 2015. |
WU L F. Fractional order grey forecasting models and their application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. | |
26 | 罗佑新. 分数阶累加多变量灰色模型FMGM(1, n)及应用[J]. 中南大学学报(自然科学版), 2017, 48 (10): 2686- 2690. |
LUO Y X . Multivariable grey model FMGM(1, n) with fractional order accumulation and its application[J]. Journal of Central South University (Science and Technology), 2017, 48 (10): 2686- 2690. | |
27 | 方世力. 基于灰信息的运载火箭方案优选与研制费用估算模型研究[D]. 南京: 南京航空航天大学, 2016. |
FANG S L. Selection model and cost estimation model construction of launch vehicle development scheme under the perspective of grey information[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
28 | 刘思峰. 灰色系统理论及其应用[M]. 9版 北京: 科学出版社, 2021: 75- 77. |
LIU S F . Grey system theory and its applicationgs[M]. 9th ed Beijing: Science Press, 2021: 75- 77. |
[1] | 高山, 智永锋, 张普, 左轩. 基于改进灰色关联分析的航天产品性能样机仿真结果一致性验证方法[J]. 系统工程与电子技术, 2023, 45(9): 2777-2783. |
[2] | 林圣琳, 李伟, 马萍, 杨明. 基于Hilbert-Huang变换的仿真模型排序评估方法[J]. 系统工程与电子技术, 2017, 39(9): 2137-2142. |
[3] | 吴利丰,刘思峰,方世力,于亮. 相似信息优先的复杂装备费用测算模型[J]. 系统工程与电子技术, 2014, 36(10): 2024-2028. |
[4] | 胡玉伟, 马萍, 杨明, 王子才. 一种时频结合分析的仿真结果动态一致性检验方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 643-649. |
[5] | 付雅芳, 杨任农, 刘晓东, 王琳. 基于灰色关联分析的软件工作量估算方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2384-2389. |
[6] | 蒋英杰, 孙志强, 宫二玲, 谢红卫. 情景环境与人为差错的对应关系分析方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(12): 2782-2787. |
[7] | 吴静,吴晓燕,陈永兴,滕江川. 基于改进灰色关联分析的仿真模型验证方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1677-1679. |
[8] | 孟凡永, 张强. 具有Choquet积分形式的模糊合作对策[J]. Journal of Systems Engineering and Electronics, 2010, 32(7): 1430-1436. |
[9] | 王友军, 吕绪良, 胡江华. 伪装遮障设计方案优选的灰色关联分析法[J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 618-620. |
[10] | 张鹏, 黄开枝, 贺晓珺, 卫红权. 基于组合权重的异构无线网络选择算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2501-2505. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||