系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1220-1228.doi: 10.12305/j.issn.1001-506X.2024.04.10

• 传感器与信号处理 • 上一篇    下一篇

基于RMDLPP的雷达空中目标分类

刘帅康1,*, 曹伟1, 管志强1, 杨学岭1,2, 许金鑫1   

  1. 1. 中国船舶集团有限公司第七二四研究所, 江苏 南京 211153
    2. 南京航空航天大学电子信息工程学院, 江苏 南京 211106
  • 收稿日期:2022-10-19 出版日期:2024-03-25 发布日期:2024-03-25
  • 通讯作者: 刘帅康
  • 作者简介:刘帅康 (1997—), 男, 硕士研究生, 主要研究方向为信号与信息处理、雷达目标识别
    曹伟 (1968—), 男, 研究员, 硕士, 主要研究方向为雷达数据处理、软件系统总体
    管志强 (1982—), 男, 研究员, 博士, 主要研究方向为雷达总体及信号处理
    杨学岭 (1986—), 男, 高级工程师, 硕士, 主要研究方向为雷达目标识别、信号处理
    许金鑫 (1993—), 男, 工程师, 博士, 主要研究方向为雷达数据处理

Classification of radar air targets based on RMDLPP

Shuaikang LIU1,*, Wei CAO1, Zhiqiang GUAN1, Xueling YANG1,2, Jinxin XU1   

  1. 1. The 724th Research Institute of China Shipbuilding Group Corporation, Nanjing 211153, China
    2. Colledge of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2022-10-19 Online:2024-03-25 Published:2024-03-25
  • Contact: Shuaikang LIU

摘要:

针对鉴别局部保持投影(discriminant locality preserving projections, DLPP)在窄带雷达目标数据降维时出现的类内离散度矩阵奇异和对孤立点敏感进而导致类别之间可分性弱的问题, 提出了基于鲁棒性边界DLPP(robust margin DLPP, RMDLPP)的窄带雷达空中目标分类方法。首先, 在计算样本之间距离时将两样本点的欧氏距离与同类样本均值相关联。然后, 挑选一定数量的边界样本点进行处理并对优化DLPP目标函数进行降维。最后, 使用高性能分类器对降维后的数据进行区分, 实现对空中目标的分类。通过对X波段对空警戒雷达实测数据的对比实验表明, 所提方法具有更好的分类准确率和对孤立点的鲁棒性。

关键词: 窄带雷达, 空中目标分类, 鉴别局部保持投影, 最大边界准则, 降维

Abstract:

Aiming at the problem of exoticism of the intraclass dispersion matrix and sensitivity to isolated points in narrowband radar target data reduction of discriminant locality preserving projections (DLPP) in narrow-band radar target data, a narrow-band radar air targets classification method based on robust margin DLPP (RMDLPP) is proposed. Firstly, the Euclidean distance of the two sample points is correlated with the homogeneous sample mean value when calculating the distance between samples. Then, a certain number of boundary sample points are selected for processing and the DLPP objective function is optimized for dimensionality reduction. Finally, a high-performance classifier is used to distinguish the dimensionality reduction data and achieve the classification of aerial targets. Comparative experiments on X-band air-to-air alert radar measurements show that the proposed method has better classification accuracy and robustness to isolated points.

Key words: narrow-band radar, air targets classification, discriminant locality preserving projections (DLPP), maximum boundry criterion, dimensionality reduction

中图分类号: