1 |
马林. 雷达目标识别技术综述[J]. 现代雷达, 2011, 33 (6): 1- 7.
doi: 10.3969/j.issn.1004-7859.2011.06.001
|
|
MA L . A review of radar target recognition technology[J]. Modern Radar, 2011, 33 (6): 1- 7.
doi: 10.3969/j.issn.1004-7859.2011.06.001
|
2 |
WANG W T , TANG Z Y , CHEN Y C , et al. Aircraft target classification for conventional narrow-band radar with multi-wave gates sparse echo data[J]. Remote Sensing, 2019, 11 (22): 2700.
doi: 10.3390/rs11222700
|
3 |
XIA S Q , ZHANG C W , CAI W Y , et al. Aircraft target classification method for conventional narrowband radar based on micro-Doppler effect[J]. Mathematical Problems in Engineering, 2022, 2022, 1- 11.
|
4 |
HE W K , SUN J , ZHANG X , et al. Micro-Doppler feature extraction of micro-rotor UAV under the background of low SNR[J]. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1127- 1139.
|
5 |
ISWARIYA S , VALARMATHI J . Micro-Doppler signature based helicopter identification and classification through machine learning[J]. International Journal of Computers, 2021, 15, 23- 29.
doi: 10.46300/9108.2021.15.4
|
6 |
ZHU L Z , ZHANG S N , CHEN S , et al. Classification of UAV-to-ground vehicles based on micro-Doppler effect and bispectrum analysis[J]. Signal, Image and Video Processing, 2019, 7, 22133- 22143.
|
7 |
SINGH A K , KIM Y H . Classification of drones using edge-enhanced micro-Doppler image based on CNN[J]. Traitement du Signal, 2021, 38 (4): 1033- 1039.
doi: 10.18280/ts.380413
|
8 |
CHIPENGO U , SLIGAR A P , CANTA S M , et al. High fidelity physics simulation-based convolutional neural network for automotive radar target classification using micro-Doppler[J]. IEEE Access, 2021, 9, 82597- 82617.
doi: 10.1109/ACCESS.2021.3085985
|
9 |
WANG W T , TANG Z Y , CHEN Y C , et al. Parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on micro-Doppler features using CNN[J]. Journal of Systems Engineering and Electronics, 2020, 31 (5): 884- 889.
doi: 10.23919/JSEE.2020.000062
|
10 |
KIM J H , PARK D H , KIM H N . Performance analysis of deep-learning target classification algorithms using micro-Doppler images[J]. The Journal of Korean Institute of Communications and Information Sciences, 2021, 46 (3): 430- 439.
doi: 10.7840/kics.2021.46.3.430
|
11 |
KANG H , KIM B K , PARK J S , et al. Drone elevation angle classification based on convolutional neural network with micro-Doppler of multipolarization[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5.
|
12 |
邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44 (3): 1036- 1043.
|
|
SHAO K , ZHU M M , WANG G Y . Modulation identification method based on generative adversarial and convolutional neural networks[J]. Systems Engineering and Electronics, 2022, 44 (3): 1036- 1043.
|
13 |
刘凯, 张斌, 黄青华. 基于TCNN-BiLSTM网络的调制识别算法[J]. 系统工程与电子技术, 2020, 42 (8): 1841- 1849.
|
|
LIU K , ZHANG B , HUANG Q H . Modulation recognition algorithm based on TCNN-BiLSTM network[J]. Systems Engineering and Electronics, 2020, 42 (8): 1841- 1849.
|
14 |
ROY D , SRIVASTAVA S , KUSUPATI A , et al. One size does not fit all: multi-scale, cascaded RNNs for radar classification[J]. ACM Trans.on Sensor Networks, 2021, 17 (2): 3501205.
|
15 |
WOLD S , ESBENSEN K , GELADI P , et al. Principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2 (1/3): 37- 52.
|
16 |
XU Y , YANG J Y , JIN Z . A novel method for Fisher discriminant analysis[J]. Pattern Recognition, 2004, 37 (2): 381- 384.
doi: 10.1016/S0031-3203(03)00232-2
|
17 |
全大英, 唐泽雨, 陈赟, 等. 基于MSST及HOG特征提取的雷达辐射源信号识别[J]. 北京航空航天大学学报, 2022, 49 (3): 538- 547.
|
|
QUAN D Y , TANG Z Y , CHEN Y , et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 49 (3): 538- 547.
|
18 |
ZHU L Z , ZHANG S N , MA Q , et al. Classification of UAV-to-ground targets based on enhanced micro-Doppler features extracted via PCA and compressed sensing[J]. IEEE Sensors Journal, 2020, 20 (23): 14360- 14368.
doi: 10.1109/JSEN.2020.3008439
|
19 |
HONG Y G , YANG Y J , PARK J . Linear discriminant analysis-based motion classification using distributed micro-Doppler radars with limited backhaul[J]. Sensors, 2021, 21 (9): 2924.
doi: 10.3390/s21092924
|
20 |
BALASUBRAMANIAN M , TENENBAUM J B , SILVA V D , et al. The ISOMAP algorithm and topological stability[J]. Science, 2002, 295 (5552): 7.
doi: 10.1126/science.295.5552.7a
|
21 |
ROWEIS S T , SAUL L K . Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326.
doi: 10.1126/science.290.5500.2323
|
22 |
HE X , NIYOGI P . Locality preserving projections[J]. Advances in Neural Information Processing Systems, 2004, 16 (16): 153- 160.
|
23 |
HE X F , YAN S C , HU Y X , et al. Face recognition using Laplacianfaces[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2005, 27 (3): 328- 340.
doi: 10.1109/TPAMI.2005.55
|
24 |
YU W , TENG X L , LIU C Q . Face recognition using discriminant locality preserving projections[J]. Image Vision Computing, 2006, 24 (3): 239- 248.
doi: 10.1016/j.imavis.2005.11.006
|
25 |
HUANG S C , LU Z . Exponential discriminant locality preserving projection for face recognition[J]. Neurocomputing, 2016, 208 (5): 373- 377.
|
26 |
LU G F , WANG Y , ZOU J , et al. Matrix exponential based discriminant locality preserving projections for feature extraction[J]. Neural Networks, 2018, 97 (97): 127- 136.
|
27 |
HE Y L, LIANG L L, XU Y, et al. Novel discriminant locality preserving projections based on improved synthetic minority oversampling with application to fault diagnosis[C]//Proc. of the 10th Data Driven Control and Learning Systems Confe-rence, 2021: 463-467.
|
28 |
ZHONG F J , LI D F , ZHANG J S . Robust locality preserving projection based on maximum correntropy criterion[J]. Journal of Visual Communication & Image Representation, 2014, 25 (7): 1676- 1685.
|
29 |
RAN R S , QIN H , ZHANG S G , et al. Simple and robust locality preserving projections based on maximum difference criterion[J]. Neural Processing Letters, 2022, 54 (3): 1783- 1804.
doi: 10.1007/s11063-021-10706-4
|
30 |
韦佳, 彭宏, 林毅申. 基于改进距离的孤立点检测方法[J]. 华南理工大学学报(自然科学版), 2008, 36 (9): 25- 30.
|
|
WEI J , PENG H , LIN Y S . Outlier detection method based on improved distance[J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36 (9): 25- 30.
|
31 |
张辉, 刘万军, 吕欢欢. 小波核局部Fisher判别分析的高光谱遥感影像特征提取[J]. 模式识别与人工智能, 2019, 32 (7): 624- 632.
|
|
ZHANG H , LIU W J , LYU H H . Feature extraction of hyperspectral remote sensing images for wavelet nucleus local Fisher discriminant analysis[J]. Pattern Recognition and Artificial Intelligence, 2019, 32 (7): 624- 632.
|