系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1212-1219.doi: 10.12305/j.issn.1001-506X.2024.04.09

• 传感器与信号处理 • 上一篇    下一篇

基于联合GLMB滤波器的可分辨群目标跟踪

齐美彬1, 庄硕1,*, 胡晶晶1, 杨艳芳2, 胡元奎3   

  1. 1. 合肥工业大学计算机与信息学院, 安徽 合肥 230009
    2. 合肥工业大学物理学院, 安徽 合肥 230009
    3. 中国电子科技集团第38研究所, 安徽 合肥 230088
  • 收稿日期:2022-09-18 出版日期:2024-03-25 发布日期:2024-03-25
  • 通讯作者: 庄硕
  • 作者简介:齐美彬 (1969—), 男, 教授, 博士, 主要研究方向为数字信号处理、行人再识别
    庄硕 (1993—), 男, 讲师, 博士, 主要研究方向为信号与信息处理、目标检测与跟踪
    胡晶晶 (1997—), 女, 助理工程师, 硕士, 主要研究方向为雷达信号处理、雷达多目标跟踪
    杨艳芳 (1979—), 女, 副教授, 硕士, 主要研究方向为数学物理方法
    胡元奎 (1979—), 男, 研究员, 博士, 主要研究方向为电子对抗

Resolvable group target tracking based on joint GLMB filter

Meibin QI1, Shuo ZHUANG1,*, Jingjing HU1, Yanfang YANG2, Yuankui HU3   

  1. 1. School of Computer and Information, Hefei University of Technology, Hefei 230009, China
    2. School of Physics, Hefei University of Technology, Hefei 230009, China
    3. The 38th Research Institute, China Electronics Technology Group Corporation, Hefei 230088, China
  • Received:2022-09-18 Online:2024-03-25 Published:2024-03-25
  • Contact: Shuo ZHUANG

摘要:

针对联合广义标签多伯努利(joint generalized labeled multi-Bernoulli, J-GLMB)滤波算法中群目标之间距离较近、容易关联错误的问题, 结合超图匹配(hypergraph matching, HGM)提出一种基于HGM-J-GLMB滤波器的可分辨群目标跟踪算法。首先, 采用J-GLMB滤波器估计群内各目标的状态、数目及轨迹信息, 并利用HGM结果提升量测与预测状态之间的关联性能。其次, 通过图理论计算邻接矩阵, 获取群结构信息和子群数目。随后, 利用群结构信息估计协作噪声, 进而校正目标的预测状态。最后, 通过平滑算法改善滤波效果, 并设置轨迹长度阈值, 使其在平滑状态达到消除短轨迹的目的。仿真实验表明, 所提算法在线性系统下能有效提升群目标跟踪性能。

关键词: 多目标跟踪, 联合广义标签多伯努利滤波, 可分辨群目标, 超图匹配

Abstract:

Aiming at the problem of association errors between group targets close to each other in the joint generalized labeled multi Bernoulli (J-GLMB) filtering algorithm, a resolvable group target tracking algorithm based on HGM-J-GLMB filter is proposed by combining hypergraph matching (HGM). Firstly, the J-GLMB filter is used to estimate the state, number, and trajectory information of each target in the group, and the HGM results are used to improve the correlation performance between measurement states and prediction states. Secondly, the adjacency matrix is calculated by graph theory to obtain group structure information and the number of subgroups. Subsequently, the collaborative noise is estimated by group structure information to correct the predicted state of the target. Finally, the filtering effect is improved through smoothing algorithms, and a trajectory length threshold is set to achieve the goal of eliminating short trajectories while maintaining a smooth state. Simulation experiment results show that the proposed algorithm can effectively improve the performance of group target tracking in linear systems.

Key words: multi-target tracking, joint generalized labeled multi-Bernoulli (J-GLMB) filter, resolvable group target, hypergraph matching (HGM)

中图分类号: