1 |
SINGER R A, STEIN J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]//Proc. of the IEEE Conference on Decision and Control, 1971: 171-175.
|
2 |
FORTMANN T E, BAR SHALOM Y, SCHEFFE M. Multi-target tracking using joint probabilistic data association[C]//Proc. of the IEEE 19th Conference on Decision and Control including the Symposium on Adaptive Processes, 1980: 807-812.
|
3 |
REID D . An algorithm for tracking multiple targets[J]. IEEE Trans.on Automatics Control, 1979, 24 (6): 1202- 1211.
|
4 |
ZHAO S J , WANG Y , WANG P Y , et al. Adaptive non-linear joint probabilistic data association for vehicle target tracking[J]. IEEE Access, 2021, 9, 14138- 14147.
doi: 10.1109/ACCESS.2021.3052555
|
5 |
MAHLER R P . Statistical multisource-multitarget information fusion[M]. London: Artech House, 2007: 685- 686.
|
6 |
DA K , LI T C , ZHU Y F , et al. Recent advances in multisensor multitarget tracking using random finite set[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22 (1): 5- 24.
|
7 |
MAHLER R . PHD filters of higher order in target number[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (4): 1523- 1543.
doi: 10.1109/TAES.2007.4441756
|
8 |
ORGUNER U, LUNDQUIST C, GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[C]//Proc. of the 14th International Conference on Information Fusion, 2011.
|
9 |
BEARD M, REUTER S, GRANSTRÖM K, et al. A generalised labelled multi-Bernoulli filter for extended multi-target tracking[C]//Proc. of the 18th International Conference on Information Fusion, 2015: 991-998.
|
10 |
GNING A , MIHAYLOVA L , MASKELL S , et al. Group object structure and state estimation with evolving networks and Monte Carlo methods[J]. IEEE Trans.on Signal Processing, 2011, 59 (4): 1383- 1396.
doi: 10.1109/TSP.2010.2103062
|
11 |
ZHU S J, LIU W F, WENG C L, et al. Multiple group targets tracking using the generalized labeled multi-Bernoulli filter[C]//Proc. of the 35th Chinese Control Conference, 2016: 4871-4876.
|
12 |
LIU W F , ZHU S J , WEN C L , et al. Structure modeling and estimation of multiple resolvable group targets via graph theory and multi-Bernoulli filter[J]. Automatica, 2018, 89, 274- 289.
doi: 10.1016/j.automatica.2017.12.004
|
13 |
LIU W , CHI Y . Resolvable group state estimation with maneuver based on labeled RFS and graph theory[J]. Sensors, 2019, 19 (6): 1307.
doi: 10.3390/s19061307
|
14 |
VO B N , VO B T , HOANG H G . An efficient implementation of the generalized labeled multi-Bernoulli filter[J]. IEEE Trans.on Signal Processing, 2016, 65 (8): 1975- 1987.
|
15 |
HOANG H G, VO B T, VO B N. A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update[C]//Proc. of the 18th International Conference on Information Fusion, 2015: 999-1006.
|
16 |
陈辉, 杜金瑞, 韩崇昭. 基于星凸形随机超曲面模型多扩展目标多伯努利滤波器[J]. 自动化学报, 2020, 46 (5): 909- 922.
|
|
CHEN H , DU J R , HAN C Z . A multiple extended target multi-Bernouli filter based on star-convex random hypersurface model[J]. Acta Automatica Sinica, 2020, 46 (5): 909- 922.
|
17 |
DO C T , NGUYEN T T D , VAN NGUYEN H . Robust multi-sensor generalized labeled multi-Bernoulli filter[J]. Signal Processing, 2022, 192, 108368.
doi: 10.1016/j.sigpro.2021.108368
|
18 |
ZASS R, SHASHUA A. Probabilistic graph and hypergraph matching[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.
|
19 |
NAWAZ M , KHAN S , QURESHI R , et al. Clustering based one-to-one hypergraph matching with a large number of feature points[J]. Signal Processing: Image Communication, 2019, 74, 289- 298.
doi: 10.1016/j.image.2019.01.001
|
20 |
WU S G, XIAO J J. Tracking group targets using hypergraph matching in data association[C]//Proc. of the Conference on Signal and Data Processing of Small Targets, 2011: 81370.
|
21 |
YU H Y , AN W , ZHU R , et al. A hypergraph matching labeled multi-Bernoulli filter for group targets tracking[J]. IEEE Trans.on Information and Systems, 2019, 102 (10): 2077- 2081.
|
22 |
迟玉东. 面向群目标运动建模与跟踪的随机有限集方法[D]. 杭州: 杭州电子科技大学, 2020.
|
|
CHI Y D. Random finite set method for group target motion modeling and tracking[D]. Hangzhou: Hangzhou Dianzi University, 2020.
|
23 |
ZHANG Z G , SUN J P , ZHOU H Y , et al. Group target tracking based on MS-member filters[J]. Remote Sensing, 2021, 13 (10): 1920.
doi: 10.3390/rs13101920
|
24 |
SCHUHMACHER D , VO B T , VO B N . A consistent metric for performance evaluation of multi object filters[J]. IEEE Trans.on Signal Processing, 2008, 56 (8): 3447- 3457.
doi: 10.1109/TSP.2008.920469
|
25 |
GAO L , BATTISTELLI G , CHISCI L , et al. Fusion-based multidetection multitarget tracking with random finite sets[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (4): 2438- 2458.
doi: 10.1109/TAES.2021.3059093
|
26 |
VO B T , VO B N . Labeled random finite sets and multi-object conjugate priors[J]. IEEE Trans.on Signal Processing, 2013, 61 (13): 3460- 3475.
doi: 10.1109/TSP.2013.2259822
|
27 |
VO B N , VO B T . A multi-scan labeled random finite set model for multi-object state estimation[J]. IEEE Trans.on Signal Processing, 2019, 67 (19): 4948- 4963.
doi: 10.1109/TSP.2019.2928953
|
28 |
KIM D Y , VO B N , VO B T , et al. A labeled random finite set online multi-object tracker for video data[J]. Pattern Recognition, 2019, 90, 377- 389.
doi: 10.1016/j.patcog.2019.02.004
|
29 |
GOSTAR A K , RATHNAYAKE T , TENNAKOON R , et al. Centralized cooperative sensor fusion for dynamic sensor network with limited field-of-view via labeled multi-Bernoulli filter[J]. IEEE Trans.on Signal Processing, 2020, 69, 878- 891.
|
30 |
NGUYEN T T D , KIM D Y . GLMB tracker with partial smoothing[J]. Sensors, 2019, 19 (20): 4419.
doi: 10.3390/s19204419
|
31 |
LIANG G L , LI Q R , QI B , et al. Multitarget tracking using one time step lagged delta-generalized labeled multi-Bernoulli smoothing[J]. IEEE Access, 2020, 8, 28242- 28256.
doi: 10.1109/ACCESS.2020.2971624
|