系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1193-1203.doi: 10.12305/j.issn.1001-506X.2024.04.07
李亮, 黄洋, 金光虎, 董臻, 何峰, 邹慕兰
收稿日期:
2022-08-30
出版日期:
2024-03-25
发布日期:
2024-03-25
通讯作者:
黄洋
作者简介:
李亮(1999—), 男, 硕士研究生, 主要研究方向为双基地空间目标ISAR成像Liang LI, Yang HUANG, Guanghu JIN, Zhen DONG, Feng HE, Mulan ZOU
Received:
2022-08-30
Online:
2024-03-25
Published:
2024-03-25
Contact:
Yang HUANG
摘要:
双基地宽带成像雷达由于不同源会产生时间同步误差和调频率同步误差。针对这一问题, 面向低成本、小型化雷达接收机设计同步方法。针对时间同步问题, 提出了直达波触发的收发脉宽非一致时间同步方案, 通过使用直达波触发接收窗启用时刻, 同时增加接收窗长度和低通匹配滤波, 以完成时间同步。针对调频率同步问题, 提出了采用吕氏分布对调频率误差进行估计, 进而进行补偿, 以完成调频率同步。该时间及调频率同步方法基本不需要增加接收机硬件成本, 可以适应小型化接收雷达需求。基于小型宽带雷达搭建室内的双基宽带雷达模型, 实验实现了双基雷达同步以及数据采集、成像。实验结果验证了所提方法的有效性。
中图分类号:
李亮, 黄洋, 金光虎, 董臻, 何峰, 邹慕兰. 双基地宽带成像雷达时间及调频率同步方法[J]. 系统工程与电子技术, 2024, 46(4): 1193-1203.
Liang LI, Yang HUANG, Guanghu JIN, Zhen DONG, Feng HE, Mulan ZOU. Time and chirp rate synchronization method of bistatic wideband imaging radar[J]. Systems Engineering and Electronics, 2024, 46(4): 1193-1203.
1 | 何鹏远, 杨志伟, 谭啸. 星载双基地雷达杂波抑制能力分析与构型优选[J]. 系统工程与电子技术, 2022, 44 (2): 440- 447. |
HE P Y , YANG Z W , TAN X . Performance analysis and configuration optimization of clutter repection ability of spaceborne bistatic radar[J]. Systems Engineering and Electronics, 2022, 44 (2): 440- 447. | |
2 | MAROM H , BAR-SHALOM Y , MILGROM B . Bistatic radar tracking with significantly improved bistatic range accuracy[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 1- 29. |
3 |
CHRIS P . An introduction to passive radar[J]. Aeronautical Journal, 2017, 121 (1244): 1601- 1603.
doi: 10.1017/aer.2017.85 |
4 |
MARTORELLA M . Analysis of the robustness of bistatic inverse synthetic aperture radar in the presence of phase synchro- nization errors[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (4): 2673- 2689.
doi: 10.1109/TAES.2011.6034658 |
5 |
LIANG D , LIU K Y , DENG Y K , et al. A high-accuracy synchronization phase-compensation method based on Kalman filter for bistatic synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (10): 1722- 1726.
doi: 10.1109/LGRS.2019.2952475 |
6 |
MING H , PAN Q H , HAN S F , et al. Impacts of space-time-frequency synchronization errors on wide-band target echo cha-racteristics of bistatic/multistatic radar[J]. Journal of Systems Engineering and Electronics, 2016, 27 (3): 562- 573.
doi: 10.1109/JSEE.2016.00060 |
7 |
CHEN J M , WANG T , LIU X Y , et al. Time and phase synchronization using clutter observations in airborne distributed coherent aperture radars[J]. Chinese Journal of Aeronautics, 2022, 35 (3): 432- 449.
doi: 10.1016/j.cja.2021.08.040 |
8 | LIANG D, ZHANG H, LIU K Y, et al. The processing of synchronization in bistatic synthetic aperture radar[C]//Proc. of the 21st International Radar Symposium, 2020: 276-280. |
9 | LIU J Y , CHEN X H . Time synchronization for multistatic radar via microwave and troposcatter[J]. The Journal of Engineer- ing, 2018, 2018 (1): 39- 41. |
10 |
YANG Y , BLUM R S . Phase synchronization for coherent MIMO radar: algorithms and their analysis[J]. IEEE Trans.on Signal Processing, 2011, 59 (11): 5538- 5557.
doi: 10.1109/TSP.2011.2162509 |
11 | DONG J , SHANG C X , GAO M G , et al. Modeling and simulation on time synchronization of indirect synchronization continuous sampling mode bistatic ISAR[J]. Journal of Data Acquisition and Processing, 2011, 26 (3): 347- 355. |
12 |
JEAN O , WEISS A J . Synchronization via arbitrary satellite signals[J]. IEEE Trans.on Signal Processing, 2014, 62 (8): 2042- 2055.
doi: 10.1109/TSP.2014.2304928 |
13 |
YATES G , HOME A , MIDDLETON R , et al. Bistatic SAR image formation[J]. IEE Proceedings, Radar, Sonar and Navigation, 2006, 153 (3): 208- 213.
doi: 10.1049/ip-rsn:20045091 |
14 | MA C , YANG J , CHEN J Y , et al. Time synchronization requirement of global navigation satellite system augmentation system based on pseudolite[J]. Measurement and Control (United Kingdom), 2019, 52 (3-4): 303- 313. |
15 |
BEHNER F , REUTER S , NIES H , et al. Synchronization and processing in the Hitchhiker bistatic SAR experiment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (3): 1028- 1035.
doi: 10.1109/JSTARS.2015.2471082 |
16 | 吴刚, 刘银年, 王建宇. 伪卫星时钟同步方法的研究[J]. 光纤与电缆及其应用技术, 2007, (2): 25- 28. |
WU G , LIU Y N , WANG J Y . Study on pseudo lite clock synchronization[J]. Optical Fiber & Electric Cable and Their Applications, 2007, (2): 25- 28. | |
17 | RODRIGUEZ C M, PRATS P, BAUMGARTNER S, et al. New processing approach and results for bistatic TerraSAR-X/F-SAR spaceborne-airborne experiments[C]//Proc. of the International Geoscience and Remote Sensing Symposium, 2009: 47-52. |
18 | 张永胜, 王敏, 梁甸农, 等. 星载寄生式InSAR系统频率同步误差分析[J]. 信号处理, 2007, 23 (6): 927- 931. |
ZHANG Y S , WANG M , LIANG D N , et al. Analysis of frequency synchronization error in spaceborne parasitic interferometric SAR system[J]. Journal of Signal Processing, 2007, 23 (6): 927- 931. | |
19 | 任光亮, 常义林, 张辉, 等. 无线OFDM系统时频同步方法研究[J]. 西安电子科技大学学报, 2005, 32 (5): 758-761, 817. |
REN G L , CHANG Y L , ZHANG H , et al. Timing and frequency synchronization method for wireless OFDM systems[J]. Journal of Xidian University, 2005, 32 (5): 758-761, 817. | |
20 | LI W C, ZOU D S, LI Y, et al. An estimation scheme of the linear time synchronization error for bistatic forward-looking SAR[C]//Proc. of the IEEE Radar Conference, 2019: 1-3. |
21 |
YU W C , SU W M , GU H . Fast method for radar maneuvering target detection and motion parameter estimation[J]. Multi- dimensional Systems and Signal Processing, 2018, 29 (4): 1411- 1425.
doi: 10.1007/s11045-017-0508-6 |
22 |
LI X L , CUI G L , KONG L J , et al. Fast non-searching method for maneuvering target detection and motion parameters esti-mation[J]. IEEE Trans.on Signal Processing, 2016, 64 (9): 2232- 2244.
doi: 10.1109/TSP.2016.2515066 |
23 | CUMMING I G , WONG F H . Synthetic aperture radar (SAR) imaging[M]. Beijing: Publishing House of Electronics Industry, 2019: 193- 197. |
24 |
WANG Y , ZHOU X Y , LU X F , et al. An approach of motion compensation and ISAR imaging for micro-motion targets[J]. Journal of Systems Engineering and Electronics, 2021, 32 (1): 68- 80.
doi: 10.23919/JSEE.2021.000008 |
25 | ZENG C Z , ZHU W G , JIA X . Bistatic ISAR sparse imaging method for high-speed moving target based on dechirping processing[J]. International Journal of Antennas & Propagation, 2019, 2019 (1): 9710968. |
26 |
HU J M , ZHOU W , FU Y W , et al. Uniform rotational motion compensation for ISAR based on phase cancellation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8 (4): 636- 640.
doi: 10.1109/LGRS.2010.2098841 |
27 |
WANG Y . New method of time-frequency representation for ISAR imaging of ship targets[J]. Journal of Systems Engineering and Electronics, 2012, 23 (4): 502- 511.
doi: 10.1109/JSEE.2012.00064 |
28 |
LV X L , BI G A , WAN C R , et al. Lv's distribution: principle, implementation, properties, and performance[J]. IEEE Trans.on Signal Processing, 2011, 59 (8): 3576- 3591.
doi: 10.1109/TSP.2011.2155651 |
29 | XIA B , YAN W , JUAN Z , et al. A novel long-time coherent integration method for moving target detection[J]. Journal of Beijing Institute of Technology, 2021, 30 (4): 340- 351. |
30 | 薛东方, 朱晓秀, 胡文华, 等. 基于加权l1范数优化的双基地ISAR稀疏成像算法[J]. 系统工程与电子技术, 2021, 43 (4): 944- 953. |
XUE D F , ZHU X X , HU W H , et al. Bi-ISAR imaging based on weighted l1 norm optimization algorithm[J]. Systems Engineering and Electronics, 2021, 43 (4): 944- 953. | |
31 | 艾小锋. 双/多基地雷达目标探测与识别[M]. 北京: 电子工业出版社, 2020: 28- 30. |
AI X F . Bi/multi-static radar target detection and identification[M]. Beijing: Publishing House of Electronics Industry, 2020: 28- 30. | |
32 | OZDEMIR C . Inverse synthetic aperture radar imaging with MATLABⓇ algorithms: with advanced SAR/ISAR imaging concepts, algorithms, and MATLABⓇ codes[M]. 2nd ed. Hoboken: Wiley, 2012: 448- 452. |
[1] | 谭啸, 杨志伟, 何鹏远, 吴翔宇. 星载双基跟飞构型的杂波特性分析及参数选择[J]. 系统工程与电子技术, 2023, 45(9): 2735-2743. |
[2] | 王森, 鲍庆龙, 潘嘉蒙, 祝茜. 基于改进概率假设密度滤波器的非合作双基地雷达目标跟踪[J]. 系统工程与电子技术, 2023, 45(7): 2002-2009. |
[3] | 倪萌钰, 陈辉, 王晓戈, 程杨, 李槟槟. 星载双基地雷达杂波建模及特性分析[J]. 系统工程与电子技术, 2023, 45(4): 1024-1031. |
[4] | 李晓辉, 王先文, 樊韬, 张峰, 刘佳文, 万宏杰. 5G-TSN系统下的高精度时间同步[J]. 系统工程与电子技术, 2023, 45(2): 559-565. |
[5] | 王宇卓, 朱圣棋, 李西敏, 兰岚. FDA MIMO双基雷达主瓣走动矫正距离模糊杂波抑制[J]. 系统工程与电子技术, 2022, 44(5): 1483-1494. |
[6] | 何鹏远, 杨志伟, 谭啸. 星载双基地雷达杂波抑制能力分析与构型优选[J]. 系统工程与电子技术, 2022, 44(2): 440-447. |
[7] | 徐志明, 艾小锋, 周柯宏, 赵锋, 肖顺平. 双基地雷达微动空间目标全极化回波仿真方法[J]. 系统工程与电子技术, 2021, 43(10): 2789-2796. |
[8] | 潘党飞, 刘文学, 袁洪, 葛建. 基于GNSS的5G基站高精度时间同步组网算法[J]. 系统工程与电子技术, 2020, 42(9): 2107-2115. |
[9] | 于少霖, 朱纪洪, 杨佳利. 基于参数交换和置信加权的信标广播时间同步[J]. 系统工程与电子技术, 2019, 41(6): 1383-1384. |
[10] | 金志刚, 丁盟格, 苏毅珊, 羊秋玲, 吴婷. 水下滑翔机间水声网络时间同步与多址融合机制[J]. 系统工程与电子技术, 2019, 41(3): 659-666. |
[11] | 宋晓雪, 魏路, 林水生. 无线自组网的自适应同步技术研究[J]. 系统工程与电子技术, 2018, 40(9): 2113-2118. |
[12] | 马永圣, 张敏, 郭福成. 基于ADS-B的多站时间同步系统的偏差联合估计方法[J]. 系统工程与电子技术, 2018, 40(4): 726-732. |
[13] | 高婧洁, 申晓红, 王海燕. 单锚节点水声网络高精度低开销初始化方法[J]. 系统工程与电子技术, 2017, 39(2): 425-430. |
[14] | 王鹏, 李革, 黄柯棣. 靶场内外场一体化仿真体系结构及时间管理[J]. 系统工程与电子技术, 2017, 39(10): 2255-2263. |
[15] | 石凡, 张升康, 尚怀赢, 梁志国, 王宏博, 武腾飞, 王海峰, 易航, 年丰, 冯克明. 基于飞秒脉冲相关法的高精度时间同步测量[J]. 系统工程与电子技术, 2016, 38(2): 265-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||