1 |
刘洋, 康健, 管海燕, 等. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25 (2): 396- 408.
|
|
LIU Y , KANG J , GUAN H Y , et al. Road extraction model of high-resolution remote sensing images based on dual-attention residual network[J]. Journal of Geo-Information Science, 2023, 25 (2): 396- 408.
|
2 |
梁茜亚, 王卷乐, 李朋飞, 等. 基于高分一号(GF-1)影像的蒙古高原干旱半干旱地区自然道路提取研究——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2022, 35 (2): 122- 131.
|
|
LIANG Q Y , WANG J L , LI P F , et al. Research on natural roads extraction in arid and semiarid regions of the Mongolian Plateau based on GF-1 images-take the Gurvantes Soum, Mongolia as an example[J]. Remote Sensing for Natural Resources, 2022, 35 (2): 122- 131.
|
3 |
DAI L , ZHANG G Y , ZHANG R T . RADANet: road augmented deformable attention network for road extraction from complex high-resolution remote-sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5602213.
|
4 |
ZHANG X , ZHANG C K , LI H M , et al. A road extraction method based on high resolution remote sensing image[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 671- 676.
|
5 |
LIU L Y , DONG Y Y , HUANG W J , et al. Enhanced regional monitoring of wheat powdery mildew based on an instance-based transfer learning method[J]. Remote Sensing, 2019, 11 (3): 298.
doi: 10.3390/rs11030298
|
6 |
MEGHANA I, MEGHANA J D N V L, JAYARAMAN R. Smart attendance management system using radio frequency identification[C]//Proc. of the International Conference on Communication and Signal Processing, 2020: 1045-1049.
|
7 |
戴激光, 王杨, 杜阳, 等. 光学遥感影像道路提取的方法综述[J]. 遥感学报, 2020, 24 (7): 804- 823.
|
|
DAI J G , WANG Y , DU Y , et al. Development and prospect of road extraction method for optical remote sensing image[J]. National Remote Sensing Bulletin, 2020, 24 (7): 804- 823.
|
8 |
DAI J G , MA R C , GONG L T , et al. A model-driven-to-sample-driven method for rural road extraction[J]. Remote Sensing, 2021, 13 (8): 1417.
doi: 10.3390/rs13081417
|
9 |
LIN X G , ZHANG R , SHEN J . A template-matching based approach for extraction of roads from very high-resolution remotely sensed imagery[J]. International Journal of Image and Data Fusion, 2012, 3 (2): 149- 168.
doi: 10.1080/19479832.2011.642413
|
10 |
TAN H , SHEN Z M , DAI J G . Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features[J]. ISPRS International Journal of Geo-Information, 2021, 10 (11): 754.
doi: 10.3390/ijgi10110754
|
11 |
YANG K L , CUI W H , SHI S , et al. Semi-automatic method of extracting road networks from high-resolution remote-sensing images[J]. Applied Sciences, 2022, 12 (9): 4705.
doi: 10.3390/app12094705
|
12 |
GUO Q , WANG Z P . A self-supervised learning framework for road centerline extraction from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4451- 4461.
doi: 10.1109/JSTARS.2020.3014242
|
13 |
LI M M , STEIN A , BIJKER W , et al. Region-based urban road extraction from VHR satellite images using binary partition tree[J]. International Journal of Applied Earth Observation and Geo-information, 2016, 44 (9): 217- 225.
|
14 |
LIN X G , XIE W H , ZHANG L B , et al. Semi-automatic road extraction from high resolution satellite images by template matching using Kullback-Leibler divergence as a similarity measure[J]. International Journal of Image and Data Fusion, 2022, 13 (4): 316- 336.
doi: 10.1080/19479832.2022.2121767
|
15 |
房玉品, 王小鹏, 李新娜. 基于自适应形态学的遥感图像道路提取[J]. 激光与光电子学进展, 2022, 59 (16): 135- 142.
|
|
FANG Y P , WANG X P , LI X N . Road extraction from remote sensing images based on adaptive morphology[J]. Laser & Optoelectronics Progress, 2022, 59 (16): 135- 142.
|
16 |
林鹏, 阮仁宗, 王玉强, 等. 一种基于面向对象的城镇道路自动提取方法研究[J]. 地理与地理信息科学, 2016, 32 (1): 42.
|
|
LIN P , RUAN R Z , WANG Y Q , et al. Research on extraction of road based on object oriented in an urban context[J]. Geography and Geo-Information Science, 2016, 32 (1): 42.
|
17 |
ABDOLLAHI A , PRADHAN B , ALAMRI A . VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data[J]. IEEE Access, 2020, 8, 179424- 179436.
doi: 10.1109/ACCESS.2020.3026658
|
18 |
WANG Y S , SEO J H , JEON T Y . NL-LinkNet: toward lighter but more accurate road extraction with nonlocal operations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3000105.
|
19 |
DING L , BRUZZONE L . DiResNet: direction-aware residual network for road extraction in VHR remote sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (12): 10243- 10254.
doi: 10.1109/TGRS.2020.3034011
|
20 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
|
21 |
ZHOU Z W , RAHMAN S M M , TAJBAKHSH N , et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans.on Medical Imaging, 2019, 39 (6): 1856- 1867.
|
22 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239.
|
23 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the Europeon Conference on Computer Vision, 2018: 833-851.
|
24 |
赵凌虎, 袁希平, 甘淑, 等. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35 (1): 107- 114.
|
|
ZHAO L H , YUAN X P , GAN S , et al. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35 (1): 107- 114.
|
25 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
|
26 |
龙伊娜, 谷玉海, 吴文昊, 等. 基于改进D-Linknet的高分遥感影像道路提取方法[J]. 激光杂志, 2023, 44 (5): 162- 168.
|
|
LONG Y N , GU Y H , WU W H , et al. Road extraction method of high resolution remote sensing image based on improved D-Linknet[J]. Laser Journal, 2023, 44 (5): 162- 168.
|
27 |
GIUSTI A, CIREȘAN D, MASCI J, et al. Fast image scanning with deep max-pooling convolutional neural networks[C]//Proc. of the IEEE International Conference on Image Processing, 2013.
|
28 |
WANG J D , KE S , CHENG T H , et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 33 (10): 3349- 3364.
|
29 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
|
30 |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proc. of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5686-5696.
|
31 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
|
32 |
JADON S. A survey of loss functions for semantic segmentation[C]//Proc. of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, 2020.
|
33 |
MA Y D, LIU Q, QIAN Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]//Proc. of the International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004: 743-746.
|
34 |
SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unba-lanced segmentations[C]//Proc. of the International Workshop on Deep Learning in Medical Image Analysis, 2017: 240-248.
|
35 |
ZHU Q Q , ZHANG Y N , WANG L Z , et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175 (12): 353- 365.
|
36 |
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 39 (4): 640- 651.
|
37 |
ZHOU L C, ZHANG C, WU M. D-LinkNet: linkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018: 192-1924.
|
38 |
TIELEMAN T , HINTON G . Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4 (2): 26- 31.
|