系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1157-1166.doi: 10.12305/j.issn.1001-506X.2024.04.03
高一丁1,2, 吴敏1,2, 郝程鹏1,2,*, 商志刚3
收稿日期:
2023-02-10
出版日期:
2024-03-25
发布日期:
2024-03-25
通讯作者:
郝程鹏
作者简介:
高一丁 (1999—), 男, 博士研究生, 主要研究方向为水声信号处理基金资助:
Yiding GAO1,2, Min WU1,2, Chengpeng HAO1,2,*, Zhigang SHANG3
Received:
2023-02-10
Online:
2024-03-25
Published:
2024-03-25
Contact:
Chengpeng HAO
摘要:
针对水下目标探测中使用的正交频分复用信号, 提出了一种针对高速微弱目标的相参积累算法, 以解决多脉冲积累下由目标机动引起的较大相位变化和由水下环境中信噪比低导致的相参积累增益不足的问题。所提算法利用分数阶傅里叶变换来估计目标的运动参数并进行补偿, 并结合Keystone变换, 实现对高速微弱目标的多脉冲相参积累。理论推导和仿真实验结果表明, 所提算法能够有效补偿高速目标脉冲间的相位移动, 并在低信噪比环境下取得较好的能量积累效果。
中图分类号:
高一丁, 吴敏, 郝程鹏, 商志刚. 基于FrFT-Keystone运动补偿的OFDM声纳高速微弱目标相参积累检测算法[J]. 系统工程与电子技术, 2024, 46(4): 1157-1166.
Yiding GAO, Min WU, Chengpeng HAO, Zhigang SHANG. Coherent integration and detection algorithm for high-speed weak targets in OFDM sonar based on FrFT-Keystone motion compensation[J]. Systems Engineering and Electronics, 2024, 46(4): 1157-1166.
1 |
STURM C , WIESBECK W . Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99 (7): 1236- 1259.
doi: 10.1109/JPROC.2011.2131110 |
2 | 赵鹏. 典型车载通信环境下OFDM信号测距测速算法研究[D]. 长沙: 湖南大学, 2014. |
ZHAO P. Range and velocity measurement using OFDM signal in typical vehicle communication environment[D]. Changsha: Hunan University, 2014. | |
3 |
ZHANG T , XIA X G . OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (1): 394- 404.
doi: 10.1109/TGRS.2014.2322813 |
4 |
ZHANG T , XIA X G , KONG L . IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Trans.on Signal Processing, 2014, 62 (18): 4748- 4759.
doi: 10.1109/TSP.2014.2339796 |
5 |
XIA X G , ZHANG T , KONG L . MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (3): 2276- 2293.
doi: 10.1109/TAES.2015.140477 |
6 |
CAO Y H , XIA X G , WANG S H . IRCI free colocated MIMO radar based on sufficient cyclic prefix OFDM waveforms[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (3): 2107- 2120.
doi: 10.1109/TAES.2015.140526 |
7 |
CAO Y H , XIA X G . IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff-chu sequences[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (5): 1126- 1130.
doi: 10.1109/LGRS.2014.2385693 |
8 | OZKAPTAN C D, EKICI E, ALTINTAS O, et al. OFDM pilot-based radar for joint vehicular communication and radar systems[C]//Proc. of the IEEE Vehicular Networking Conference, 2018. |
9 | 顾陈, 张劲东, 朱晓华. 基于OFDM的多载波调制雷达系统信号处理及检测[J]. 电子与信息学报, 2009, 31 (6): 1298- 1300. |
GU C , ZHANG J D , ZHU X H . Signal processing and detecting for multicarrier modulated radar system based on OFDM[J]. Journal of Electronics & Information Technology, 2009, 31 (6): 1298- 1300. | |
10 | 张杨梅, 冯西安. 匀速运动目标长时间积累检测中的解距离模糊算法研究[J]. 西北工业大学学报, 2016, 34 (2): 194- 200. |
ZHANG Y M , FENG X A . Resolving range ambiguity in long time accumulation detection of target moving with uniform velocity[J]. Journal of Northwestern Polytechnical University, 2016, 34 (2): 194- 200. | |
11 |
ZHENG J B , LIU H W , LIU J , et al. Radar high-speed maneuvering target detection based on three-dimensional scaled transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (8): 2821- 2833.
doi: 10.1109/JSTARS.2018.2846731 |
12 | 张杨梅. 水下小目标主动探测关键技术研究[D]. 西安: 西北工业大学, 2017. |
ZHANG Y M. Research on the key technologies of active detection of underwater small target[D]. Xi'an: Northwestern Polytechnical University, 2017. | |
13 | 杨宇超, 方明, 赵晨帆. 高速机动目标长时间相参积累和参数估计算法研究[J]. 系统工程与电子技术, 2022, 44 (12): 3811- 3820. |
YANG Y C , FANG M , ZHAO C F . Research on long time coherent integration and parameter estimation algorithm of high-speed maneuvering targets[J]. Systems Engineering and Electronics, 2022, 44 (12): 3811- 3820. | |
14 | 孙苇轩, 闫晟, 郝程鹏. 适用于水下高速机动目标的自适应检测方法[J]. 无人系统技术, 2022, 5 (4): 40- 49. |
SUN W X , YAN S , HAO C P . Adaptive detection method for underwater high-speed maneuvering targets[J]. Unmanned Systems Technology, 2022, 5 (4): 40- 49. | |
15 |
PIGNOL F , COLONE F , MARTELLI T . Lagrange-polynomial-interpolation-based keystone transform for a passive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (3): 1151- 1167.
doi: 10.1109/TAES.2017.2775924 |
16 | 张亮, 陈辉, 张昭建, 等. 基于非标准Keystone变换的波形捷变雷达相参积累算法[J]. 系统工程与电子技术, 2023, 45 (11): 3481- 3490. |
ZHANG L , CHEN H , ZHANG Z J , et al. A coherent integration algorithm of waveform-agile radar based on non-standard Keystone transform[J]. Systems Engineering and Electronics, 2023, 45 (11): 3481- 3490. | |
17 | JIAO Z, ZHANG W. A novel detection method based on ge-neralized Keystone transform and RFT for high-speed maneuvering target[C]//Proc. of the 8th International Symposium on Computational Intelligence and Design, 2015: 279-282. |
18 | SUO P C , TAO S , TAO R , et al. Detection of high-speed and accelerated target based on the linear frequency modulation radar[J]. Institution of Engineering and Technology Radar, Sonar & Navigation, 2014, 8 (1): 37- 47. |
19 |
XING M D , SU J H , WANG G Y , et al. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (1): 214- 224.
doi: 10.1109/TAES.2011.5705671 |
20 | SU J H , XING M D , WANG G Y . High-speed multi-target detection with narrowband radar[J]. IET, Radar, Sonar & Navigation, 2010, 4 (4): 595- 603. |
21 | 裴家正, 黄勇, 陈宝欣. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10 (6): 956- 969. |
PEI J Z , HUANG Y , CHEN B X . Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10 (6): 956- 969. | |
22 |
TIAN J , CUI W , WU S . A novel method for parameter estimation of space moving targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (2): 389- 393.
doi: 10.1109/LGRS.2013.2263332 |
23 | 杨宇超, 方明, 赵晨帆, 等. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45 (5): 1359- 1370. |
YANG Y C , FANG M , ZHAO C F , et al. Long-time coherent integration algorithm for high-speed maneuvering targets[J]. Systems Engineering and Electronics, 2023, 45 (5): 1359- 1370. | |
24 |
CHEN X L , GUAN J , LIU N B , et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Trans.on Signal Processing, 2014, 62 (4): 939- 953.
doi: 10.1109/TSP.2013.2297682 |
25 |
LI X L , CUI G L , YI W , et al. Coherent integration for maneuvering target detection based on Radon-Lv's distribution[J]. IEEE Signal Processing Letters, 2015, 22 (9): 1467- 1471.
doi: 10.1109/LSP.2015.2390777 |
26 | WU M , YAN S F . Motion compensation for OFDM inverse synthetic aperture sonar imaging based on compressed sensing[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 5011613. |
27 | 杨宇飞. 基于OFDM雷达通信一体化的接收算法设计[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
YANG Y F. Design of receiving algorithm OFDM based radar communication integration[D]. Harbin: Harbin Institute of Technology, 2017. | |
28 | 黄响. 高速微弱目标检测算法研究[D]. 西安: 西安电子科技大学, 2019. |
HUANG X. Study on high-speed low-observable target detection[D]. Xi'an: Xidian University, 2019. | |
29 | 张顺生, 曾涛. 基于Keystone变换的微弱目标检测[J]. 电子学报, 2005, 33 (9): 1675- 1678. |
ZHANG S S , ZENG T . Weak target detection based on Keystone transform[J]. Acta Electronica Sinica, 2005, 33 (9): 1675- 1678. | |
30 |
ALMEIDA L B . The fractional Fourier transform and time-frequency representations[J]. IEEE Trans.on Signal Processing, 1994, 42 (11): 3084- 3091.
doi: 10.1109/78.330368 |
31 |
ZHANG X H , CAI J Y , LIU L F , et al. An integral transform and its applications in parameter estimation of LFM signals[J]. Circuits, Systems, and Signal Processing, 2012, 31 (3): 1017- 1031.
doi: 10.1007/s00034-011-9356-z |
32 | ZHAN M Y , HUANG P H , ZHU S Q , et al. A modified Keystone transform matched filtering method for space-moving target detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5105916. |
33 | LI X L , CUI G L , YI W , et al. Manoeuvring target detection based on Keystone transform and Lv's distribution[J]. Institution of Engineering and Technology Radar, Sonar & Navigation, 2016, 10 (7): 1234- 1242. |
34 | LI X L , KONG L J , CUI G L , et al. CLEAN-based coherent integration method for high-speed multi-targets detection[J]. Institution of Engineering and Technology Radar, Sonar & Navigation, 2016, 10 (9): 1671- 1682. |
35 |
MISIUREWICZ J , KULPA K S , CZEKALA Z , et al. Radar detection of helicopters with application of CLEAN method[J]. IEEE Trans.on Aerospace and Electronic Systems, 2012, 48 (4): 3525- 3537.
doi: 10.1109/TAES.2012.6324734 |
36 |
KRONAUGE M , ROHLING H . Fast two-demensional CFAR procedure[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (3): 1817- 1823.
doi: 10.1109/TAES.2013.6558022 |
[1] | 田元荣, 王俊迪, 吴笑天. 转发式干扰条件下LFM雷达的检测概率估计[J]. 系统工程与电子技术, 2024, 46(2): 497-504. |
[2] | 杨宇超, 方明, 赵晨帆, 方刚. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45(5): 1359-1370. |
[3] | 张亮, 杜庆磊, 周必雷, 瞿奇哲, 王永良. 基于非标准Keystone变换的捷变频雷达相参积累算法[J]. 系统工程与电子技术, 2023, 45(12): 3836-3844. |
[4] | 张亮, 陈辉, 张昭建, 王晓戈, 王永良. 基于非标准Keystone变换的波形捷变雷达相参积累算法[J]. 系统工程与电子技术, 2023, 45(11): 3481-3490. |
[5] | 吕岩, 曹菲, 许剑锋, 冯晓伟. 基于FRFT的单基地MIMO雷达稳健波束形成算法[J]. 系统工程与电子技术, 2023, 45(1): 79-85. |
[6] | 王震铎, 朱云飞, 宁晓燕, 刁鸣. FrFT-OFDM系统中联合ICI自消除方案[J]. 系统工程与电子技术, 2022, 44(8): 2645-2651. |
[7] | 杨宇超, 方明, 赵晨帆, 王玥琪, 方刚. 高速机动目标长时间相参积累和参数估计算法研究[J]. 系统工程与电子技术, 2022, 44(12): 3811-3820. |
[8] | 王宁, 吕晓德, 李苗苗, 刘忠胜. 多频带互相干处理中多目标相位补偿方法[J]. 系统工程与电子技术, 2022, 44(10): 3083-3089. |
[9] | 王晓戈, 陈辉, 倪萌钰, 倪柳柳, 李槟槟. 基于相位调制的雷达抗假目标干扰方法[J]. 系统工程与电子技术, 2021, 43(9): 2476-2483. |
[10] | 陈一畅, 熊鑫, 王万田. 基于稀疏FrFT的窄带雷达目标架次识别方法[J]. 系统工程与电子技术, 2021, 43(8): 2129-2136. |
[11] | 丁逊, 张劲东, 王娜, 王玉莹. 基于相参积累的捷变频雷达系统相位误差估计与稀疏场景重构算法[J]. 系统工程与电子技术, 2021, 43(6): 1515-1523. |
[12] | 欧阳鑫信, 姚山峰, 杨宇翔, 贺青, 万群. 跳频信号的相参与非相参积累时频差估计方法[J]. 系统工程与电子技术, 2021, 43(5): 1184-1190. |
[13] | 谢存祥, 张立民, 钟兆根. 基于时频特征提取和残差神经网络的雷达信号识别[J]. 系统工程与电子技术, 2021, 43(4): 917-926. |
[14] | 王宁, 周明, 刘国庆, 杨予昊, 孙俊. 基于Chirp Z变换的海面目标帧间非相参积累技术[J]. 系统工程与电子技术, 2021, 43(2): 383-389. |
[15] | 全英汇, 方文, 沙明辉, 陈侠达, 阮锋, 李兴华, 孟飞, 吴耀君, 邢孟道. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126-3136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||