系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (4): 1143-1156.doi: 10.12305/j.issn.1001-506X.2024.04.02
卢海梁1, 范清彪1, 李鹏飞2, 李一楠2,*, 严颂华3, 郎量4, 靳榕4, 李青侠4
收稿日期:
2022-12-13
出版日期:
2024-03-25
发布日期:
2024-03-25
通讯作者:
李一楠
作者简介:
卢海梁 (1986—), 男, 研究员, 博士, 主要研究方向为微波被动遥感、微波辐射探测、射频干扰检测基金资助:
Hailiang LU1, Qingbiao FAN1, Pengfei LI2, Yinan LI2,*, Songhua YAN3, Liang LANG4, Rong JIN4, Qingxia LI4
Received:
2022-12-13
Online:
2024-03-25
Published:
2024-03-25
Contact:
Yinan LI
摘要:
从综合孔径微波辐射成像技术实际需求和技术特点出发, 首先简要回顾了综合孔径微波辐射成像技术的整个发展历程; 然后, 从地球被动微波遥感和目标被动探测两个应用领域较为全面地介绍了综合孔径微波辐射成像技术的发展现状, 包括综合孔径微波辐射成像系统研制和相关重要研究进展等; 最后, 从高空间分辨率和多手段联合等方面总结了综合孔径微波辐射成像技术的发展趋势。随着综合孔径微波辐射成像技术的发展,其在地球被动微波遥感和目标探测领域将会得到更广泛的应用。
中图分类号:
卢海梁, 范清彪, 李鹏飞, 李一楠, 严颂华, 郎量, 靳榕, 李青侠. 综合孔径微波辐射成像技术发展现状与趋势[J]. 系统工程与电子技术, 2024, 46(4): 1143-1156.
Hailiang LU, Qingbiao FAN, Pengfei LI, Yinan LI, Songhua YAN, Liang LANG, Rong JIN, Qingxia LI. Development status and trend of synthetic aperture microwave radiation imaging technology[J]. Systems Engineering and Electronics, 2024, 46(4): 1143-1156.
68 | NI W , HU F , CHEN K . Performance analysis of synthetic aperture radiometer in aerial stealthy targets detection[J]. Journal of Microwaves, 2012, 28 (2): 28-31, 41. |
69 | 刘云, 张志国, 陈后财, 等. 综合孔径微波辐射计远距离探测天线设计[C]//第三届微波遥感技术研讨会论文集, 2012: 151-160. |
LIU Y, ZHANG Z G, CHEN H C, et al. Integrated aperture microwave radiometer long-range detection antenna design[C]//Proc. of the 3rd Symposium on Microwave Remote Sensing Technology, 2012: 151-160. | |
70 | 李曙光, 于守江, 姜伟, 等. 综合孔径辐射计空中隐身目标探测技术[J]. 无线电工程, 2015, 45 (3): 50-53, 61. |
LI S G , YU S J , JIANG W , et al. Detection of aerial stealthy targets by synthetic aperture microwave radiometer[J]. Radio Engineering, 2015, 45 (3): 50-53, 61. | |
71 | 卢海梁, 王志强, 高超, 等. 基于被动干涉微波亮温图像的海面目标探测算法研究[J]. 电子与信息学报, 2020, 42 (3): 563- 572. |
LU H L , WANG Z Q , GAO C , et al. Research on the detection algorithm for sea surface targets based on passive interferometric microwave images[J]. Journal of Electronic Information Technology, 2020, 42 (3): 563- 572. | |
72 |
LU H L , LI H , CHEN L B , et al. A ship detection and tracking algorithm for an airborne passive interferometric microwave sensor (PIMS)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 3519- 3532.
doi: 10.1109/JSTARS.2021.3066514 |
73 | ZHU D , WU L , CHENG Y Y , et al. Deterministic array configurations for radiometric sensitivity optimization in microwave interferometric radiometers[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5300912. |
74 | 程翔, 王轩. 复杂电磁环境构建及效能评估发展与构想[J]. 雷达与对抗, 2021, 41 (4): 11-14, 19. |
CHENG X , WANG X . Development and conception of construction of complex electromagnetic environment and efficiency evaluation[J]. Radar & ECM, 2021, 41 (4): 11-14, 19. | |
1 | 张祖荫, 林士杰. 微波辐射测量技术及应用[M]. 北京: 电子工业出版社, 1995. |
ZHANG Z Y , LIN S J . Microwave radiation measurement technology and application[M]. Beijing: Publishing House of Electronics Industry, 1995. | |
2 | ULABY F T , MOORE R K , FUNG A K . Microwave remote sensing: active and passive (Vol. Ⅰ): microwave remote sensing fundamentals and radiometry[M]. Norwood, MA: Addison-Wesley, 1981. |
3 |
YUJIRI L , SHOUCRI M , MOFFA P . Passive millimeter wave imaging[J]. IEEE Microwave Magazine, 2003, 4 (3): 39- 50.
doi: 10.1109/MMW.2003.1237476 |
4 | 李青侠, 陈柯, 郎量, 等. 高分辨率被动微波遥感-综合孔径微波辐射成像(上册)[M]. 北京: 科学出版社, 2017. |
LI Q X , CHEN K , LANG L , et al. High-resolution passive microwave remote sensing-integrated aperture microwave radiation imaging (volume 1)[M]. Beijing: Science Press, 2017. | |
5 |
CHENG Y Y , TIAN X , ZHU D , et al. Regional-based object detection using polarization and fisher vectors in passive millimeter-wave imaging[J]. IEEE Trans.on Microwave Theory and Techniques, 2023, 71 (6): 2702- 2713.
doi: 10.1109/TMTT.2022.3230940 |
6 | 胡泰洋, 张晋宇, 卢海梁, 等. 基于数据融合的分布式综合孔径微波辐射高分辨率成像算法[J]. 系统工程与电子技术, 2022, 44 (8): 2403- 2409. |
HU T Y , ZHANG J Y , LU H L , et al. Distributed synthetic aperture microwave radiometric high-resolution imaging algorithm based on data fusion[J]. Systems Engineering and Electronics, 2022, 44 (8): 2403- 2409. | |
7 |
RUF C S , SWIFT C T , TANNER A B , et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth[J]. IEEE Trans.on Geoscience and Remote Sensing, 1988, 26 (5): 597- 611.
doi: 10.1109/36.7685 |
8 | 李鹏飞, 卢海梁, 韩涛, 等. 基于漏波天线的分布式微波辐射计[J]. 系统工程与电子技术, 2022, 44 (7): 2125- 2133. |
LI P F , LU H L , HAN T , et al. Distributed microwave radio-meter based on leaky wave antenna[J]. Systems Engineering and Electronics, 2022, 44 (7): 2125- 2133. | |
9 | 卢海梁, 李一楠, 宋广南, 等. 海面目标星载微波辐射无源探测技术研究[J]. 红外与毫米波学报, 2019, 38 (5): 674- 681. |
LU H L , LI Y N , SONG G N , et al. Research on the passive detection technology using space-borne synthesis aperture microwave radiometers for the sea surface target[J]. Journal of Infrared and Millimeter Waves, 2019, 38 (5): 674- 681. | |
10 |
LU H L , LI Y N , LI H , et al. Ship detection by an airborne passive interferometric microwave sensor (PIMS)[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (4): 2682- 2694.
doi: 10.1109/TGRS.2019.2953355 |
11 |
SU J L , WU H F , LI P F , et al. Detection for ship by dual-polarization imaging radiometer[J]. Optics Express, 2021, 29 (17): 27830- 27844.
doi: 10.1364/OE.432432 |
12 | 李一楠, 张林让, 卢海梁, 等. 基于地基综合孔径微波辐射计的空中目标无源探测技术研究[J]. 电子与信息学报, 2021, 43 (5): 1243- 1250. |
LI Y N , ZHANG L R , LU H L , et al. Research on the aerial target detection by ground-based synthesis aperture microwave radiometers[J]. Journal of Electronic Information Technology, 2021, 43 (5): 1243- 1250. | |
13 | MARTIN-NEIRA M, PIERA M, SCALA F, et al. Formation flying L-band aperture synthesis mission concept[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 7696-7699. |
14 | MARTIN-NEIRA M, OLIVA R, ONRUBIA R, et al. SMOS instrument performance after more than 11 years in orbit[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2021: 7744-7747. |
15 | KENDRA J R, BLOY G J, HUGHES J. Rotary-motion-extended array synthesis (R-MXAS): simultaneous sparsity and sensitivity in a synthetic aperture imaging radiometer[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2021: 7696-7699. |
16 | DOU H F , LI H , HE Z , et al. Analysis and correction of the phase and amplitude errors for mirrored aperture synthesis[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 8012905. |
17 |
CORBELLA I , TORRES F , CLOSA J , et al. One-point microwave radiometer calibration[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (3): 461- 463.
doi: 10.1109/LGRS.2019.2923539 |
18 | LI Y N , ZHANG W X , ZHANG J , et al. Improved CLEAN algorithm for RFI mitigation of aperture synthesis radiometer images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4018105. |
19 |
FONT J , CAMPS A , BORGES A , et al. SMOS: the challenging sea surface salinity measurement from space[J]. Proc.of the IEEE, 2010, 98 (5): 649- 665.
doi: 10.1109/JPROC.2009.2033096 |
20 |
TANNER A B , WILSON W J , LAMBRIGSTEN B H , et al. Initial results of the geostationary synthetic thinned array radiometer (GeoSTAR) demonstrator instrument[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (7): 1947- 1957.
doi: 10.1109/TGRS.2007.894060 |
21 |
MCMULLAN K D , BROWN M A , MARTIN-NEIRA M , et al. SMOS: the payload[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (3): 594- 605.
doi: 10.1109/TGRS.2007.914809 |
22 | MARTÍN-NEIRA M , SUESS M , GANDINI E . On antenna polarization axes in L-band aperture synthesis arrays with dual polarization receivers for earth observation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 5003103. |
23 | LIU H, WU J, ZHANG S W, et al. Conceptual design and breadboarding activities of geostationary interferometric microwave sounder (GIMS)[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2009. |
24 | PEICHL M, SUSS H, DILL S. High-resolution passive millimeter-wave imaging technologies for reconnaissance and surveillance[C]//Proc. of the Conference on Passive Millimeter-Wave Imaging Technology Ⅵ and Radar Sensor Technology Ⅶ, 2003, 5077: 77-86. |
25 | HUANG J, GAN T G. A novel millimeter wave synthetic aperture radiometer passive imaging system[C]//Proc. of the 4th International Conference on Microwave and Millimeter Wave Technology, 2004: 414-417. |
26 | LI Q X, CHEN K, GUO W, et al. An aperture synthesis radiometer at millimeter wave band[C]//Proc. of the International Conference on Microwave and Millimeter Wave Technology, 2008: 1699-1701. |
27 |
LE-VINE D M . Synthetic aperture radiometer systems[J]. IEEE Trans.on Microwave Theory and Techniques, 1999, 47 (12): 2228- 2236.
doi: 10.1109/22.808964 |
28 |
LE-VINE D M , JACKSON T J , HAKEN M . Initial images of the synthetic aperture radiometer 2D-STAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (11): 3623- 3632.
doi: 10.1109/TGRS.2007.903830 |
29 | RUF C, PRINCIPE C, DOD T, et al. Lightweight rainfall radio-meter STAR aircraft sensor[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2002: 850-852. |
30 | European Space Agency. Introducing SMOS[EB/OL]. [2022-12-01]. https://www.esa.int/Applications/Observing_the_Earth/FutureEO/SMOS/Introducing SMOS, 2022.11. |
31 |
LAURSEN B , SKOU N . Synthetic aperture radiometry evaluated by a two-channel demonstration model[J]. IEEE Trans. on Geoscience and Remote Sensing, 1998, 36 (3): 822- 832.
doi: 10.1109/36.673675 |
32 | MARTIN-NEIRA M, GOUTOULE J M, KNIGHT A, et al. Integration of MIRAS breadboard and future activities[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 1996: 869-871. |
33 |
MARTIN-NEIRA M , CABEZA I , PEREZ C , et al. AMIRAS-an airborne MIRAS demonstrator[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (3): 705- 716.
doi: 10.1109/TGRS.2008.916266 |
34 | RAUTIAINEN K, KAINULAINEN J, AUER T, et al. Helsinki university of technology synthetic aperture radiometer-HUT-2D[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2007: 3635-3638. |
35 |
LEMMETYINEN J , UUSITALO J , AND KAINULAINEN J , et al. SMOS calibration subsystem[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (11): 3691- 3700.
doi: 10.1109/TGRS.2007.904910 |
36 | GARCIA-GARCIA Q, ESPINOSA D, ZURITA A, et al. Antenna element study for a future SMOS mission[C]//Proc. of the 16th European Conference on Antennas and Propagation, 2022. |
37 | PEREZ I R. Pau-synthetic aperture: a new instrument to test potential improvements for future interferometric radiometers[D]. Barcelona: Universitat Politècnica de Catalunya, 2012. |
38 |
PAUL K , AMINE A , MAX D , et al. Irregular layout for a satellite's interferometric array[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9408- 9423.
doi: 10.1109/JSTARS.2021.3109730 |
39 | LUTZNER M , JAGDHUBER T , CAMPS A , et al. Orbit design for a satellite swarm-based motion induced synthetic aperture radiometer (MISAR) in low-earth orbit for earth observation applications[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 1002116. |
40 | TANNER A B, WILSON W J, LAMBRIGSTEN B H, et al. Initial results of the geosynchronous synthetic thinned array radiometer (GeoSTAR)[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2006: 3968-3971. |
41 | LIM B, GAIER T, KANGASLAHTI P, et al. Initial results from the GeoSTAR-Ⅱ laboratory demonstrator[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2012: 1282-1285. |
42 |
LAMBRIGTSEN B , KANGASLAHTI P , MONTES O , et al. A geostationary microwave sounder: design, implementation and performance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 623- 640.
doi: 10.1109/JSTARS.2021.3132238 |
43 | CHRISTENSEN J, CARLSTROM A, EKSTROM H, et al. GAS: the geostationary atmospheric sounder[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2007: 223-226. |
44 | LAGANA A R, IERO D A M, ISERNIA T, et al. On the design and optimization of the array elements in the GEO atmospheric sounder instrument: a new design procedure[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2010: 578-581. |
45 | MARTIN R, SCHUETZ C A, DILLON T E, et al. Design and performance of a distributed aperture millimeter-wave imaging system using optical upconversion[C]//Proc. of the SPIE: Passive Millimeter-Wave Imaging Technology XⅡ, 2009: 7309. |
46 | KULPA K S. Passive multi-static radiometric detection of moving targets[C]//Proc. of the 15th International Conference on Microwaves, Radar and Wireless Communications, 2004: 92-96. |
47 | SHAO X M, JUNOR W I, ZENICK R, et al. Passive interferometric millimeter-wave imaging: achieving big results with a constellation of small satellites[C]//Proc. of the Radar Sensor Technology Ⅷ and Passive Millimeter-Wave Imaging, 2004, 5410: 270-277. |
48 | LU H L, LI Q X, ZHENG W C, et al. An improved method of compensating the mutual coupling effect for aperture synthesis radiometers[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2016: 414-417. |
49 | DONG X L, WU J, ZHU S Y, et al. The design and implementation of CAS C-band interferometric synthetic aperture radiometer[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2000: 866-868. |
50 | LIU H, WU J, BAN S Z, et al. The CAS airborne X-band synthetic aperture radiometer: system configuration and experimental results[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2004, 3: 2230-2233. |
51 |
LI Y N , WANG C C , LU H L , et al. Spaceborne high precision sea surface salinity remote sensing by interferometric radio-metry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9383- 9395.
doi: 10.1109/JSTARS.2021.3111782 |
52 | YANG X J, SONG G N, LU H L, et al. Characterization of the X-band FPASMR airborne experiment[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 8886-8888. |
53 |
FU P , ZHU D , HU F , et al. A near-field imaging algorithm based on angular spectrum theory for synthetic aperture interferometric radiometer[J]. IEEE Trans.on Microwave Theory and Techniques, 2022, 70 (7): 3606- 3616.
doi: 10.1109/TMTT.2022.3175156 |
54 | HU H , ZHU D , HU F . A novel imaging method using fractional Fourier transform for near-field synthetic aperture radio-meter systems[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 5003005. |
55 | 薛永, 苗俊刚, 万国龙. 8 mm波段二维综合空径微波辐射计(BHU-2D)[J]. 北京航空航天大学学报, 2008, 34 (9): 1020- 1023. |
XUE Y , MIAO J G , WAN G L . 8 mm band 2-dimensional synthetic aperture microwave radiometer (BHU-2D)[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34 (9): 1020- 1023. | |
56 |
YANG H , ZHANG D H , QIN S Y , et al. Real-time detection of concealed threats with passive millimeter wave and visible images via deep neural networks[J]. Sensors, 2021, 21 (24): 8456.
doi: 10.3390/s21248456 |
57 | CHEN L B , LI Q X , GUO W , et al. One-dimensional mirrored interferometric aperture synthesis[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 7 (2): 357- 361. |
58 | LI Y F , LI Q X , CHEN K , et al. Initial results of H-Matrix reconstruction method for 1-D mirrored aperture synthesis radio-meters[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 8005505. |
59 |
DOU H F , CHEN K , LI Q X , et al. Maximum-rank arrays for two-dimensional mirrored aperture synthesis[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (3): 499- 503.
doi: 10.1109/LGRS.2020.2978013 |
60 | GUO X , CAMPS A , PARK H , et al. Phase and amplitude calibrations of rotating equispaced circular array for geostationary microwave interferometric radiometers-theory and methods[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5300615. |
61 | ZHANG C , LIU H , WU J , et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 53 (1): 207- 218. |
62 | LIU H, NIU L J, ZHANG C, et al. Preliminary results of GIMS-Ⅱ (geostationary interferometric microwave sounder-second generation) demonstrator[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2017: 711-714. |
63 |
ZHANG C , LIU H , NIU L J , et al. CSMIR: an L-band clock scan microwave interferometric radiometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (6): 1874- 1882.
doi: 10.1109/JSTARS.2018.2828698 |
64 | LI Y , YIN X B , ZHOU W , et al. Performance simulation of the payload IMR and MICAP onboard the Chinese ocean salinity satellite[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5301916. |
65 | 彭树生, 李兴国. 毫米波辐射计反空中涂层隐身飞机的分析[J]. 红外与毫米波学报, 1998, 17 (6): 454- 458. |
PENG S S , LI X G . Analysis of anti-coating-stealth-airplane with a milimeter wave radiometer[J]. Journal of Infrared and Millimeter Waves, 1998, 17 (6): 454- 458. | |
66 | 董晓龙, 吴季, 姜景山. 微波辐射计用于隐身目标探测的性能分析[J]. 系统工程与电子技术, 2001, 23 (3): 54- 57. |
DONG X L , WU J , JIANG J S . The performance of the detection of stealthy targets by microwave radiometer[J]. Systems Engineering and Electronics, 2001, 23 (3): 54- 57. | |
67 | 郎量, 张祖荫, 郭伟, 等. 机载综合孔径辐射计用于目标探测的性能分析[J]. 华中科技大学学报: 自然科学版, 2008, 36 (10): 59- 62. |
LANG L , ZHANG Z Y , GUO W , et al. Performance analysis of application of airborne synthetic aperture radiometer to target detection[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36 (10): 59- 62. | |
68 | 倪炜, 胡飞, 陈柯. 综合孔径辐射计空中隐身目标探测性能分析[J]. 微波学报, 2012, 28 (2): 28-31, 41. |
[1] | 杨磊, 孙卫天, 毛欣瑶, 夏亚波, 桑婧隺. 雷达鸟类目标微多普勒贝叶斯增强算法[J]. 系统工程与电子技术, 2024, 46(2): 505-516. |
[2] | 刘俊, 崔宁, 谢佳昕, 行坤. 基于NSGA-Ⅲ的机载雷达空空射频隐身探测参数设计[J]. 系统工程与电子技术, 2024, 46(1): 97-104. |
[3] | 韦道知, 张曌宇, 谢家豪, 李宁. 基于改进Actor-Critic算法的多传感器交叉提示技术[J]. 系统工程与电子技术, 2023, 45(6): 1624-1632. |
[4] | 胡泰洋, 张晋宇, 卢海梁, 李鹏飞, 李一楠, 吕容川. 基于数据融合的分布式综合孔径微波辐射高分辨率成像算法[J]. 系统工程与电子技术, 2022, 44(8): 2403-2409. |
[5] | 李鹏飞, 卢海梁, 韩涛, 党鹏举, 李一楠, 李浩, 吕容川. 基于漏波天线的分布式微波辐射计[J]. 系统工程与电子技术, 2022, 44(7): 2125-2133. |
[6] | 金韬, 朱迪, 何杰颖, 王文煜. 星载太赫兹高频段大气背景辐射特性研究[J]. 系统工程与电子技术, 2022, 44(10): 3003-3011. |
[7] | 赵宜楠, 宋群, 冯翔, 吴中杰, 赵占锋. 基于模糊函数构型的动目标探测波形设计[J]. 系统工程与电子技术, 2020, 42(2): 263-270. |
[8] | 孟令博, 耿修瑞. 改进的主峭度分析算法及其在高光谱图像小目标检测中的应用[J]. 系统工程与电子技术, 2018, 40(12): 2855-2861. |
[9] | 于晓涵, 陈小龙, 黄勇, 关键, 何友. 雷达动目标短时稀疏分数阶表示域探测方法[J]. 系统工程与电子技术, 2018, 40(11): 2426-. |
[10] | 张翔, 李革, 王鹏. 基于动态数据驱动的反潜战仿真系统目标探测设计[J]. 系统工程与电子技术, 2018, 40(11): 2591-. |
[11] | 邹鲲, 吴德伟, 李伟. 认知雷达起伏目标检测[J]. 系统工程与电子技术, 2017, 39(5): 1007-1012. |
[12] | 曲洪东, 翟龙军, 高山. 六边形格点毫米波干涉阵列的稀疏与优化[J]. 系统工程与电子技术, 2015, 37(7): 1483-1488. |
[13] | 苏福顺, 吴琼之, 孙林, 邢洋. 微波辐射计中异步量化技术的可行性分析[J]. 系统工程与电子技术, 2015, 37(4): 763-767. |
[14] | 黄全亮,孙春芳,李召阳, 陈柯. 超综合孔径辐射计系统研究[J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1385-1388. |
[15] | 张卫杰, 高昭昭, 许博, 高尚伟. 基于Keystone变换的警戒雷达信号处理[J]. Journal of Systems Engineering and Electronics, 2011, 33(9): 2007-2011. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||