1 |
ZADEH L A . Fuzzy sets[J]. Information & Control, 1965, 8 (3): 338- 353.
|
2 |
ATANASSOV K T . Intuitionistic fuzzy sets[J]. Fuzzy Sets & Systems, 1986, 20 (1): 87- 96.
|
3 |
YAGER R R , ABBASOV A M . Pythagorean membership grades, complex numbers and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452.
doi: 10.1002/int.21584
|
4 |
YAGER R R . Pythagorean membership grades in multicriteria decision making[J]. IEEE Trans. on Fuzzy Systems, 2014, 22 (4): 958- 965.
doi: 10.1109/TFUZZ.2013.2278989
|
5 |
TORRA V . Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25 (6): 529- 539.
|
6 |
刘卫锋, 何霞. 毕达哥拉斯犹豫模糊集[J]. 模糊系统与数学, 2016, 30 (4): 107- 115.
|
|
LIU W F , HE X . Pythagorean hesitant fuzzy set[J]. Fuzzy Systems and Mathematics, 2016, 30 (4): 107- 115.
|
7 |
刘卫锋, 何霞, 常娟. 毕达哥拉斯犹豫模糊集的相关测度[J]. 控制与决策, 2019, 34 (5): 1018- 1024.
|
|
LIU W F , HE X , CHANG J . Correlation measures of Pythagorean hesitant fuzzy set[J]. Control and Decision, 2019, 34 (5): 1018- 1024.
|
8 |
WEI G W , MAO L . Dual hesitant Pythagorean fuzzy hamacher aggregation operators in multiple attribute decision making[J]. Archives of Control Sciences, 2017, 27 (3): 365- 395.
doi: 10.1515/acsc-2017-0024
|
9 |
WEI G W , WANG J , WEI C , et al. Dual hesitant Pythagorean fuzzy Hamy mean operators in multiple attribute decision making[J]. IEEE Access, 2019, 7, 86697- 86716.
doi: 10.1109/ACCESS.2019.2924974
|
10 |
TANG X Y , WEI G W . Dual hesitant Pythagorean fuzzy Bonferroni mean operators in multi-attribute decision making[J]. Archives of Control Sciences, 2019, 29 (2): 339- 386.
|
11 |
LIANG D C , XU Z S . The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets[J]. Applied Soft Computing Journal, 2017, 60 (11): 167- 179.
|
12 |
常娟, 杜迎雪, 刘卫锋. 广义毕达哥拉斯犹豫模糊集混合加权距离测度及决策应用[J]. 浙江大学学报(理学版), 2021, 48 (3): 304- 313.
|
|
CHANG J , DU Y X , LIU W F . Generalized Pythagorean hesitant fuzzy set hybrid weighted distance measure and its application to decision making[J]. Journal of Zhejiang University (Science Edition), 2021, 48 (3): 304- 313.
|
13 |
MUHAMMAD S A , SALEEM A , ASAD A , et al. Pythagorean hesitant fuzzy sets and their application to group decision making with incomplete weight information[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33 (6): 3971- 3985.
|
14 |
WU Q , LIN W H , ZHOU L G , et al. Enhancing multiple attribute group decision making flexibility based on information fusion technique and hesitant Pythagorean fuzzy sets[J]. Computers & Industrial Engineering, 2019, 127 (1): 954- 970.
|
15 |
AKRAM M , LUQMAN A , KAHRAMAN C . Hesitant Pythagorean fuzzy ELECTRE-Ⅱ method for multi-criteria decision-making problems[J]. Applied Soft Computing, 2021, 108 (3): 107479.
|
16 |
AKRAM M , LUQMAN A , ALCANTUD J . An integrated ELECTRE-Ⅰ approach for risk evaluation with hesitant Pytha-gorean fuzzy information[J]. Expert Systems with Application, 2022, 200 (8): 116945.
|
17 |
林萍萍, 李登峰, 江彬倩, 等. 属性关联的双极容度多属性决策VIKOR方法[J]. 系统工程理论与实践, 2021, 41 (8): 2147- 2156.
|
|
LIN P P , LI D F , JIANG B Q , et al. Bipolarcapacities multi-attribute decision making[J]. Systems Engineering-Theory & Practice, 2021, 41 (8): 2147- 2156.
|
18 |
方冰, 韩冰, 闻传花. 基于新型距离测度的概率犹豫模糊多属性群决策方法[J]. 控制与决策, 2022, 37 (3): 729- 736.
|
|
FANG B , HAN B , WEN C H . Probabilistic hesitant fuzzy group decision-making based on new distance measure[J]. Control and Decision, 2022, 37 (3): 729- 736.
|
19 |
尹东亮, 崔国恒, 黄晓颖, 等. 基于改进得分函数和前景理论的区间毕达哥拉斯模糊多属性决策[J]. 系统工程与电子技术, 2022, 44 (11): 3463- 3469.
doi: 10.12305/j.issn.1001-506X.2022.11.21
|
|
YIN D L , CUI G H , HUANG X Y , et al. Interval Pythagoras fuzzy multi-attribute decision making based on improved score function and prospect theory[J]. Systems Engineering and Electronics, 2022, 44 (11): 3463- 3469.
doi: 10.12305/j.issn.1001-506X.2022.11.21
|
20 |
李美娟, 卢锦呈. 基于一种新得分函数和累积前景理论的毕达哥拉斯模糊TOPSIS法[J]. 控制与决策, 2022, 37 (2): 483- 492.
|
|
LI M J , LU J C . Pythagorean fuzzy TOPSIS based on novel score function and cumulative prospect theory[J]. Control and Decision, 2022, 37 (2): 483- 492.
|
21 |
谭春桥, 贾媛. 基于证据理论和前景理论的犹豫-直觉模糊语言多准则决策方法[J]. 控制与决策, 2017, 32 (2): 333- 339.
|
|
TAN C Q , JIA Y . Multi-criteria decision-making method based on evidence theory and prospect theory for hesitant-intuitionistic fuzzy linguistic[J]. Control and Decision, 2017, 37 (2): 333- 339.
|
22 |
LOURENZUTTI R , KROHLING R A , REFORMAT M Z . Choquet based TOPSIS and TODIM for dynamic and heterogeneous decision making with criteria interaction[J]. Information Sciences, 2017, 408 (10): 41- 69.
|
23 |
TAN C Q , CHEN X H . Interval-valued intuitionistic fuzzy multicriteria group decision making based on VIKOR and choquet integral[J]. Journal of Applied Mathematics, 2013, (9): 656879.
|
24 |
WANG J Q , WANG J , CHEN Q H , et al. An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets[J]. Information Sciences, 2014, 280 (10): 338- 351.
|
25 |
TIAN X L , NIU M L , ZHANG W K , et al. A novel TODIM based on prospect theory to select green supplier with q-rung orthopair fuzzy set[J]. Technological and Economic Development of Economy, 2020, 27 (2): 284- 310.
doi: 10.3846/tede.2020.12736
|
26 |
WU P , ZHOU L G , CHEN H Y , et al. Additive consistency of hesitant fuzzy linguistic preference relation with a new expansion principle for hesitant fuzzy linguistic term sets[J]. IEEE Trans. on Fuzzy Systems, 2018, 27 (4): 716- 730.
|
27 |
WEI G , ALSAADI F E , HAYAT T , et al. A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure[J]. International Journal of Fuzzy Systems, 2017, 19 (3): 607- 614.
doi: 10.1007/s40815-016-0177-x
|
28 |
NIE R X , TIAN Z P , WANG J Q , et al. Pythagorean fuzzy multiple criteria decision analysis based on Shapley fuzzy measures and partitioned normalized weighted Bonferroni mean operator[J]. International Journal of Intelligent Systems, 2019, 34 (2): 297- 324.
doi: 10.1002/int.22051
|
29 |
CHEN C Y , HUANG J J . Integration of genetic algorithms and neural networks for the formation of the classifier of the hierarchical Choquet integral[J]. Information Sciences, 2020, 537 (10): 46- 61.
|