1 |
石荣, 肖悦. 行为科学的新分支: 电磁辐射源行为学[J]. 航天电子对抗, 2018, 34 (4): 1- 6.
doi: 10.3969/j.issn.1673-2421.2018.04.001
|
|
SHI R , XIAO Y . A new branch of behavioral science: electromagnetic radiation source behaviorology[J]. Aerospace Electronic Warfare, 2018, 34 (4): 1- 6.
doi: 10.3969/j.issn.1673-2421.2018.04.001
|
2 |
WRABEL A , GRAEF R , BROSCH T . A survey of artificial intelligence approaches for target surveillance with radar sensors[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36 (7): 26- 43.
doi: 10.1109/MAES.2021.3065069
|
3 |
ALTMANN M, OTT P, STACHE N C, et al. A cognitive FMCW radar to minimize a sequence of range-Doppler measurements[C]//Proc. of the 17th European Radar Conference, 2021: 226-229.
|
4 |
GURBUZ S Z , GRIFFITHS H D , CHARLISH A , et al. An overview of cognitive radar: past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34 (12): 6- 18.
doi: 10.1109/MAES.2019.2953762
|
5 |
SKOLNIK M . Radar handbook[M]. 3rd ed New York: McGraw-Hill Companies, 2008.
|
6 |
GUO S Z , TRACEY H . Discriminant analysis for radar signal classification[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (4): 3134- 3148.
doi: 10.1109/TAES.2020.2965787
|
7 |
LEVANON N , MOZESON E . Radar signals[M]. Hoboken, NJ: John Wiley & Sons, 2004.
|
8 |
NEUBERGER N , VEHMAS R . A costas-based waveform for local range-Doppler sidelobe level reduction[J]. IEEE Signal Processing Letters, 2021, 28, 673- 677.
doi: 10.1109/LSP.2021.3067219
|
9 |
CORRELL B , BEARD J K , SWANSON C N . Costas array waveforms for closely spaced target detection[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (2): 1045- 1076.
doi: 10.1109/TAES.2019.2925486
|
10 |
DEEP R E A , KASTANTIN R . Costas-code-based radar waveform design using adaptive weights with target scattering coefficients and optimal variable time spacing with improved ambiguity function[J]. IET Radar, Sonar & Navigation, 2020, 14 (12): 1905- 1917.
|
11 |
MENG X P , SHANG C X , DONG J , et al. Automatic modulation classification of noise-like radar intrapulse signals using cascade classifier[J]. ETRI Journal, 2021, 43 (6): 991- 1003.
doi: 10.4218/etrij.2020-0338
|
12 |
LI D J , YANG R J , DONG R J , et al. Emitter signals modulation recognition based on discriminative projection and collaborative representation[J]. IET Radar, Sonar & Navigation, 2020, 14 (5): 782- 791.
|
13 |
CHI K , SHEN J H , LI Y , et al. A novel segmentation approach for work mode boundary detection in MFR pulse sequence[J]. Digital Signal Processing, 2022, 126, 103462.
doi: 10.1016/j.dsp.2022.103462
|
14 |
LI Y J , ZHU M T , MA Y H , et al. Work modes recognition and boundary identification of MFR pulse sequences with a hie-rarchical seq2seq LSTM[J]. IET Radar, Sonar & Navigation, 2020, 14 (9): 1343- 1353.
|
15 |
APFELD S, CHARLISH A, ASCHEID G. Modelling, learning and prediction of complex radar emitter behaviour[C]//Proc. of the 18th IEEE International Conference on Machine Learning and Applications, 2019: 305-310.
|
16 |
KRISHNAMURTHY V , PATTANAYAK K , GOGINENI S , et al. Adversarial radar inference: inverse tracking, identifying cognition, and designing smart interference[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 57 (4): 2067- 2081.
|
17 |
APFELD S , CHARLISH A . Recognition of unknown radar emitters with machine learning[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (6): 4433- 4447.
doi: 10.1109/TAES.2021.3098125
|
18 |
MANNA M L, MONSURRÒ P, TOMMASINO P, et al. Machine learning techniques for frequency sharing in a cognitive radar[C]//Proc. of the IEEE Radar Conference, 2018: 732-735.
|
19 |
LI K, JIU B, LIU H W, et al. Reinforcement learning based anti-jamming frequency hopping strategies design for cognitive radar[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2018.
|
20 |
茅于海. 频率捷变雷达分析[M]. 北京: 国防工业出版社, 1981.
|
|
MAO Y H . Frequency agility radar[M]. Beijing: National Defense Industry Press, 1981.
|
21 |
李红卫, 蔡金元, 王玉田, 等. 机载有源相控阵雷达的作战优势、性能对比及军事应用[J]. 国防科技, 2015, 36 (6): 69- 73.
|
|
LI H W , CAI J Y , WANG Y T , et al. The operational advantage, performance comparison and military application of airborne APAR[J]. National Defense Science & Technology, 2015, 36 (6): 69- 73.
|
22 |
HUANG T Y , LIU Y M , XU X Y , et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Trans.on Signal Processing, 2018, 66 (23): 6228- 6240.
doi: 10.1109/TSP.2018.2876301
|
23 |
AKHTAR J, OLSEN K E. Frequency agility radar with overlapping pulses and sparse reconstruction[C]//Proc. of the IEEE Radar Conference, 2018: 61-66.
|
24 |
WANG W S, YANG Y L, LI Y Y. Multi-step prediction of frequency hopping sequences based on Bayesian inference[C]//Proc. of the IET International Conference on Information and Communications Technologies, 2013: 94-99.
|
25 |
ZHAO L , WANG L , BI G A , et al. Robust frequency-hopping spectrum estimation based on sparse Bayesian method[J]. IEEE Trans.on Wireless Communications, 2015, 14 (2): 781- 793.
doi: 10.1109/TWC.2014.2360191
|
26 |
LIU X Q , SIDIROPOULOS N D , SWAMI A . Joint hop timing and frequency estimation for collision resolution in FH networks[J]. IEEE Trans.on Wireless Communications, 2005, 4 (6): 3063- 3074.
doi: 10.1109/TWC.2005.858006
|
27 |
FAN H N, GUO Y, FENG X. Blind parameter estimation of frequency hopping signals based on matching pursuit[C]//Proc. of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008.
|
28 |
SAPANKEVYCH N I , SANKAR R . Time series prediction using support vector machines: a survey[J]. IEEE Computational Intelligence Magazine, 2009, 4 (2): 24- 38.
doi: 10.1109/MCI.2009.932254
|
29 |
LEI Z W, ZHENG L H, DING H, et al. Prediction and separation of synchronous-networking frequency hopping signals based on RBF neural network[C]//Proc. of the 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, 2016: 427-431.
|
30 |
李文情. 跳频信号的检测[D]. 西安: 西安电子科技大学, 2012.
|
|
LI W Q. Frequency-hopping signal's detection[D]. Xi'an: Xidian University, 2012.
|
31 |
LI G, XU J L, SHEN W G, et al. LSTM-based frequency hopping sequence prediction[C]//Proc. of the International Conference on Wireless Communications and Signal Processing, 2020: 472-477.
|
32 |
张家树. 混沌信号的非线性自适应预测技术及其应用研究[D]. 成都: 电子科技大学, 2001.
|
|
ZHANG J S. Nonlinear adaptive prediction technologies of chaotic signals and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2001.
|
33 |
全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43 (11): 3126- 3136.
|
|
QUAN Y H , FANG W , SHA M H , et al. Present situation and prospects of frequency agility radar waveform countermea-sures[J]. Systems Engineering and Electronics, 2021, 43 (11): 3126- 3136.
|
34 |
GRAVES A . Supervised sequence labelling with recurrent neural networks[M]. Berlin: Springer-Verlag, 2012.
|
35 |
HE H, ZHANG Q, BAI S M, et al. CATN: cross attentive tree-aware network for multivariate time series forecasting[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022: 4030-4038.
|
36 |
SOOD A, CRAVEN M. Feature importance explanations for temporal Black-Box models[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022: 8351-8360.
|
37 |
WANG H, AHN E, KIM J M. Self-supervised representation learning framework for remote physiological measurement using spatiotemporal augmentation loss[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022: 2431-2439.
|
38 |
LIN H T, GAO Z Y, XU Y J, et al. Conditional local convolution for spatio-temporal meteorological forecasting[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022: 7470-7478.
|
39 |
GOODFELLOW I , BENGIO Y , COURVILLE A . Deep learning[M]. Cambridge: MIT Press, 2017.
|
40 |
YU L, CHEN J, DING G R. Spectrum prediction via long short term memory[C]//Proc. of the 3rd IEEE International Conference on Computer and Communications, 2017: 643-647.
|
41 |
YU L , CHEN J , DING G R , et al. Spectrum prediction based on Taguchi method in deep learning with long short-term me-mory[J]. IEEE Access, 2018, 6, 45923- 45933.
doi: 10.1109/ACCESS.2018.2864222
|