系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (3): 868-881.doi: 10.12305/j.issn.1001-506X.2024.03.12
肖国尧1,*, 廖桂生2, 柯华锋1, 李帅3, 全英汇1
收稿日期:
2022-07-01
出版日期:
2024-02-29
发布日期:
2024-03-08
通讯作者:
肖国尧
作者简介:
肖国尧(1986—), 男, 副研究员, 博士研究生, 主要研究方向为多功能一体化微系统技术、实时信号处理技术Guoyao XIAO1,*, Guisheng LIAO2, Huafeng KE1, Shuai LI3, Yinghui QUAN1
Received:
2022-07-01
Online:
2024-02-29
Published:
2024-03-08
Contact:
Guoyao XIAO
摘要:
在无人机载、弹载综合电子应用领域, 基于传统分立器件设计的信号处理系统面临日益突显的资源受限问题。因此, 针对无人机载、弹载综合电子系统的多功能、小型化、高性能应用的迫切需求, 提出一种侦干探多功能一体化信号处理微系统集成设计技术。基于三维堆叠等先进封装技术, 将射频直采数模/模数转换器、可编程逻辑器件、处理器、大容量易失型存储器、非易失性存储器以及阻容等诸多元件进行共封装设计集成, 构成可同时完成侦察、干扰、探测功能信号处理的微系统, 并构建多功能应用场景, 完成软硬件测试验证。该微系统不仅在体积、重量、性能、集成度等方面具有一定优越性, 而且大大简化了信号处理系统的复杂电路设计, 更便于系统的标准化、通用化和软件化, 具有较大的应用前景。
中图分类号:
肖国尧, 廖桂生, 柯华锋, 李帅, 全英汇. 一种侦干探多功能一体化微系统设计[J]. 系统工程与电子技术, 2024, 46(3): 868-881.
Guoyao XIAO, Guisheng LIAO, Huafeng KE, Shuai LI, Yinghui QUAN. Design of a multi-functional integrated microsystem for reconnaissance jamming and detection[J]. Systems Engineering and Electronics, 2024, 46(3): 868-881.
表2
信号处理SiP芯片技术指标"
项目 | 指标 |
处理器 | 四核Cortex-A53, 最高主频1.3 GHz 双核Cortex-R5, 最高主频600 MHz |
RF-ADC | 8通道, 14 bit, 最大5 GSPS, 自带NCO |
RF-DAC | 8通道, 14 bit, 最大10 GSPS, 自带NCO |
模拟带宽 | DC-6 GHz |
逻辑资源 | 930 300个Slice单元, 4 272个DSP单元 |
存储器 | 4Gb Nor Flash 16GB DDR4 SDRAM, 2 400 MT/s |
接口资源 | PCIe: Gen3×2路 GTY: 16路, 最大25 Gbps/lane SATA3.1:1路, 6 Gbps USB3.0:2路, 5 Gbps CAN总线: 2路, 支持2.0A/B协议 |
尺寸信息 | 47×70×9 mm3 |
1 | TAVIK G C , HILTERBRICK C L , EVINS J B , et al. The advanced multifunction RF concept[J]. IEEE Trans.on Microwave Theory & Techniques, 2005, 53 (3): 1009- 1020. |
2 | LIU R. The development trend of integrated electronic system for ground combat platform[C]//Proc. of the International Conference on Intelligent Computation Technology and Automation, 2018: 246-250. |
3 | MOO W P, DIFILIPPO J D. Overview of naval multifunction RF systems[C]//Proc. of the European Radar Conference, 2018: 178-181. |
4 | 王向晖, 李忠, 张华栋. 从侦干探通一体化角度初探飞行平台的射频资源管控[J]. 航天电子对抗, 2017, 33 (5): 46- 50. |
WANG X H , LI Z , ZHANG H D . The RF resource management of the aviation platform from the perpective of integrated reconnaissance, interference, detection and communications[J]. Aerospace Electronic Warfare, 2017, 33 (5): 46- 50. | |
5 | 刘智星, 全英汇, 肖国尧, 等. 基于PRI捷变的雷达通信一体化共享信号设计方法[J]. 系统工程与电子技术, 2021, 43 (10): 2836- 2842. |
LIU Z X , QUAN Y H , XIAO G Y , et al. Signal design method for integrated radar and communication based on PRI agility[J]. Systems Engineering and Electronics, 2021, 43 (10): 2836- 2842. | |
6 |
王杨婧, 秦绪嵘, 冯小晶, 等. 一种星载大功率T/R组件的高密度组装技术[J]. 空间电子技术, 2021, 18 (6): 75- 79.
doi: 10.3969/j.issn.1674-7135.2021.06.012 |
WANG Y J , QIN X R , FENG X J , et al. High density assembly technology of high-power T/R module for satellite[J]. Space Electronic Technology, 2021, 18 (6): 75- 79.
doi: 10.3969/j.issn.1674-7135.2021.06.012 |
|
7 |
周凤艳, 陈志岩, 张璇如. 一种实用雷达侦察干扰一体化收发前端设计方法[J]. 空军预警学院学报, 2014, 28 (6): 395-398, 403.
doi: 10.3969/j.issn.2095-5839.2014.06.002 |
ZHOU F Y , CHEN Z Y , ZHANG X R . Design of transceiver front-end for integration of rada or reconnaissance or jamming[J]. Journal of Air Force Early Warning Academy, 2014, 28 (6): 395-398, 403.
doi: 10.3969/j.issn.2095-5839.2014.06.002 |
|
8 | 马定坤, 匡银, 杨新权. 侦干探通一体化现状与关键技术研究[J]. 中国电子科学研究院学报, 2016, 11 (5): 457- 462. |
MA D K , KUANG Y , YANG X Q . Research on the current situation and key technology of the exploration integration[J]. Journal of China Academy of Electronics and Information Technology, 2016, 11 (5): 457- 462. | |
9 | LEE L, KANG L, KWON Y T, et al. FOWLP technology as wafer level system in packaging (SiP) solution[C]//Proc. of the International Conference on Electronics Packaging, 2017: 491-493. |
10 | VÄHÄHEIKKILÄ T, LAHTI M. Microsystem integration from RF to millimeter wave applications[C]//Proc. of the SPIE 9517, Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, 2015. |
11 | ROSENBERG A, BUADANA N, LIN A, et al. A novel concept for RF-system-in-package high volume production mea-surements[C]//Proc. of the IEEE International Conference on Microwaves, 2015. |
12 |
CHAO T Y , LIANG C W , CHENG Y T , et al. Heterogeneous chip integration process for flexible wireless microsystem application[J]. IEEE Trans.on Electron Devices, 2011, 58 (3): 906- 909.
doi: 10.1109/TED.2010.2102357 |
13 | 周海斌, 何国强. 基于SiP技术的雷达信号处理微系统设计[J]. 遥测遥控, 2021, 42 (5): 70- 76. |
ZHOU H F , HE G Q . Radar signal processing microsystem based on SiP[J]. Journal of Telemetry, Tracking and Command, 2021, 42 (5): 70- 76. | |
14 | FAN F F, ZHOU R H, YANG B, et al. A structure of IF FM modulation-demodulation based on software radio technology[C]//Proc. of the International Conference on Computer Science and Service System, 2011: 3826-3829. |
15 | DEVAL Y, DELTIMPLE N, RIVET F, et al. Low cost mobile RF terminal paradigms: from multi-radio to software radio[C]//Proc. of the IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010: 627-630. |
16 | 吴彬彬, 全英汇, 肖国尧, 等. 基于射频收发器的高中频DBF系统设计[J]. 系统工程与电子技术, 2022, 44 (2): 365- 375. |
WU B B , QUAN Y H , XIAO G Y , et al. Design of high-IF DBF system based on RF transceiver[J]. Systems Engineering and Electronics, 2022, 44 (2): 365- 375. | |
17 | BAI Z J , WU Y L , WANG W M , et al. A zero intermediate frequency RF transceiver with tunable operating frequency band[J]. International Journal of RF and Microwave Computer Aided Engineering, 2021, 31 (3): e22534. |
18 | CHENG Q , GONG K X , ZHANG M , et al. An efficient wide-band signal detection and extraction method[J]. MATEC Web of Conferences, 2021, 336 (2): 306- 313. |
19 |
YU S . Design of a narrow transition band dynamic digital channelized receiver without merging adjacent sub[J]. Journal of Physics: Conference Series, 2020, 1486 (4): 042044.
doi: 10.1088/1742-6596/1486/4/042044 |
20 | SHI L , HUANG Z , FENG X F . Design and implementation of partial shared digital channelized receiver[J]. Journal of Beijing Institute of Technology, 2021, 30 (2): 186- 193. |
21 | SI W J , LIU Q , DENG Z A . Adaptive reconstruction algorithm based on compressed sensing broadband receiver[J]. Wireless Communications and Mobile Computing, 2021, 6673235. |
22 | ZHANG C, MA H, JIAO Y W. Design of efficient dynamic digital channelization structure[C]//Proc. of the International Conference on Network Communication, Computer Engineering, 2018: 1058-1065. |
23 | SCHLEHER D C . Electronic warfare in the information age[M]. London: Artech House, 1999. |
24 | XIE M, HUANG J Z, JIANG Y S. et al. Design and realization of DRFM system based on FPGA and DSP[C]//Proc. of the IET International Radar Conference, 2015. |
25 | JI Z, WANG G H, ZHANG X Y, et al. Technique of anti-multi-range-false-target jamming for radar network based on double discrimination[C]//Proc. of the CIE International Conference on Radar, 2016. |
26 | SIDDIQUI F A, SRENG V, DANILO-LEMOINE F, et al. Suppression of intermittent interference using smart antenna with distributed training scheme[C]//Proc. of the International Bhurban Conference on Applied Sciences & Technology Islamabad, 2014: 425-429. |
27 |
SHI Q Z . On deception jamming for countering LFM radar based on periodic 0-π phase modulation[J]. International Journal of Electronics and Communications, 2018, 83, 245- 252.
doi: 10.1016/j.aeue.2017.09.010 |
28 | LI S Y, ZHANG L R, LIU N, et al. Range-angle dependent detection for FDA-MIMO radar[C]//Proc. of the CIE International Conference on Radar, 2016. |
29 | HARDIWANSYAH M, TAHCFULLOH S, HENDRANTORO G. Parameter identifiability of phased-MIMO radar[C]//Proc. of the International Conference of Artificial Intelligence and Information Technology, 2019: 192-195. |
30 | HARRIS F J , DICK C , RICE M . Digital receivers and transmitters using polyphase filter banks for wireless communications[J]. IEEE Trans.on Microwave Theory & Techniques, 2003, 51 (4): 1395- 412. |
31 | FIELDS T W, ZAHIRNIAK D R, SHARPIN D L. Hardware efficient digital channelized receiver[P]. U.S. : US19970816951, 2000. |
32 | MAURER D E , CHAMLOU R , GENOVESE K O . Signal processing algorithms for electronic combat receiver applications[J]. Johns Hopkins Apl Technical Digest, 1997, 18 (1): 69- 78. |
33 | HUANG H , WANG R F , ZHANG C F , et al. Tunable ultra-flat optical comb enabled reconfigurable and efficient coherent channelized receiver[J]. Optics Letters, 2020, 45 (4): 849- 851. |
34 | SHEHATA M G, AHMED F M, SALEM S, et al. Design and implementation of LFMCW radar signal processor for slowly moving target detection using FPGA[C]//Proc. of the International Conference on Electrical Engineering, 2020: 241-248. |
35 | ALMSLMANY A, WANG C Y, CAO Q S. Advanced deceptive jamming model based on DRFM Sub-Nyquist sampling[C]//Proc. of the International Bhurban Conference on Applied Sciences and Technology, 2016: 727-730. |
36 | LI C Z, SU W M, HONG G, et al. Improved interrupted sampling repeater jamming based on DRFM[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2014: 254-257. |
37 | 刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11 (2): 301- 312. |
LIU Z X , DU S Y , WU Y J , et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11 (2): 301- 312. | |
38 | LI S Y, ZHANG L R, LIU N, et al. Range-angle dependent detection for FDA-MIMO radar[C]//Proc. of the CIE International Conference on Radar, 2016. |
39 | AKÇAKAYA M, NEHORAI A. MIMO radar sensitivity analysis for target detection[C]//Proc. of the IEEE Radar Conference, 2011: 633-638. |
40 | ZANG H K, LIU H W, ZHOU S H, et al. MIMO radar waveform design involving receiving beamforming[C]//Proc. of the International Radar Conference, 2014. |
41 |
WU S H , LU G Y . Compressive beam and channel tracking with reconfigurable hybrid beamforming in mmWave MIMO OFDM systems[J]. IEEE Trans.on Wireless Communications, 2023, 22 (2): 1145- 1160.
doi: 10.1109/TWC.2022.3202160 |
42 | ZHANG L J . Fast target detection algorithm based on CFAR and target variance characteristics[J]. Wireless Communications and Mobile Computing, 2022, 5878443. |
43 | LI Z S, LI Y L, ZHANG J F. A sidelobe cancellation doppler filter for angular measurement in monopulse radar imagination[C]//Proc. of the International Academic Exchange Conference on Science and Technology Innovation, 2021: 29-33. |
44 | XIONG Y Y , XIE W C . Multi-difference beams adaptive iterative monopulse estimation method for airborne radar[J]. Digital Signal Processing, 2022, 120, 103260. |
45 | MICHELE C , ALESSANDRO S . A novel integrated approach to optimize copper wire bonding processes and manufacturing[J]. International Journal on Interactive Design and Manufacturing, 2022, 16, 371- 379. |
46 | IKEDA H. Heterogeneous 3D stacking technologies after memory cubes[C]//Proc. of the IEEE International Workshop on Low Temperature Bonding for 3D Integration, 2012. |
47 | HORIBE A, YAMADA F. Advanced 3D chip stack process for thin dies with fine pitch bumps using pre-applied inter chip fill[C]//Proc. of the IEEE International Conference on 3D System Integration, 2009. |
48 | FUKUSHIMA T. 3D memory chip stacking by multi-layer self-assembly technology[C]//Proc. of the IEEE International 3D Systems Integration Conference, 2013. |
49 | ZHAO S J, CHEN S, QIN F, et al. Thermal stress analysis of wafer-level multilayer stacking process for 3D-TSV packaging[C]//Proc. of the International Conference on Electronic Packaging Technolog, 2022. |
50 | DONG Y, ZHANG J, MA Q, et al. Process simulation of gold wire ball thermosonic bonding for hybrid integrated circuits[C]//Proc. of the International Conference on Electronic Packaging Technology, 2022. |
[1] | 李晓柏, 杨瑞娟, 程伟, 罗菁. 新的互补序列在雷达通信一体化中的应用[J]. 系统工程与电子技术, 2021, 43(3): 693-699. |
[2] | 阳榴, 朱卫纲, 吕守业, 马爽. 面向非协作多功能雷达的波形单元提取方法[J]. 系统工程与电子技术, 2021, 43(10): 2843-2850. |
[3] | 张柏开, 朱卫纲. MFR认知干扰决策体系构建及关键技术[J]. 系统工程与电子技术, 2020, 42(9): 1969-1975. |
[4] | 张柏开, 朱卫纲. 对多功能雷达的DQN认知干扰决策方法[J]. 系统工程与电子技术, 2020, 42(4): 819-825. |
[5] | 李波, 周静杨, 高晓光. 基于拍卖算法的相控阵雷达任务调度方法[J]. 系统工程与电子技术, 2018, 40(8): 1736-1742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||