1 |
王俊, 郑彤, 雷鹏, 等. 基于卷积神经网络的手势动作雷达识别方法[J]. 北京航空航天大学学报, 2018, 44 (6): 1117- 1123.
|
|
WANG J , ZHENG T , LEI P , et al. Hand gesture recognition method by radar based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (6): 1117- 1123.
|
2 |
王勇, 王沙沙, 田增山, 等. 基于FMCW雷达的双流融合神经网络手势识别方法[J]. 电子学报, 2019, 47 (7): 1408- 1415.
doi: 10.3969/j.issn.0372-2112.2019.07.003
|
|
WANG Y , WANG S S , TIAN Z S , et al. Two-stream fusion neural network approach for hand gesture recognition based on FMCW radar[J]. Acta Electronica Sinica, 2019, 47 (7): 1408- 1415.
doi: 10.3969/j.issn.0372-2112.2019.07.003
|
3 |
夏朝阳, 周成龙, 介钧誉, 等. 基于多通道调频连续波毫米波雷达的微动手势识别[J]. 电子与信息学报, 2020, 42 (1): 164- 172.
|
|
XIA C Y , ZHOU C L , JIE J Y , et al. Micromotion gesture recognition based on multi-channel frequency modulated continuous wave millimeter wave radar[J]. Journal of Electronics & Information Technology, 2020, 42 (1): 164- 172.
|
4 |
靳标, 彭宇, 邝晓飞, 等. 基于串联式一维神经网络的毫米波雷达动态手势识别方法[J]. 电子与信息学报, 2021, 43 (9): 2743- 2750.
|
|
JIN B , PENG Y , KUANG X F , et al. Dynamic gesture recognition method based on millimeter-wave radar by one-dimensional series neural network[J]. Journal of Electronics & Information Technology, 2021, 43 (9): 2743- 2750.
|
5 |
冯翔, 刘涛, 崔文卿, 等. 基于双视角时序特征融合的毫米波雷达手势数字识别研究[J]. 电子与信息学报, 2023, 45 (6): 2134- 2143.
|
|
FENG X , LIU T , CUI W Q , et al. Hand-writing number recognition based on millimeter-wave radar with dual-view feature fusion network[J]. Journal of Electronics & Information Technology, 2023, 45 (6): 2134- 2143.
|
6 |
TOHIDI E , RADMARD M , MAJD M N , et al. Compressive sensing MTI processing in distributed MIMO radars[J]. IET Signal Processing, 2018, 12 (3): 327- 334.
doi: 10.1049/iet-spr.2016.0597
|
7 |
GARCIA F D A , RODRIGUEZ A C F , F-RAIDENRAICH G , et al. CA-CFAR detection performance in homogeneous Weibull clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (6): 887- 891.
doi: 10.1109/LGRS.2018.2885451
|
8 |
QIU X P , SUN T X , XU Y G , et al. Pretrained models for natural language proces-sing: a survey[J]. Science China Technological Sciences, 2020, 63, 1872- 1897.
doi: 10.1007/s11431-020-1647-3
|
9 |
ALVESPINTO A , DEMUS C , SPRANGERM , et al. Iterative named entity recognition with conditional random fields[J]. Ap-plied Sciences, 2022, 12 (1): 330.
|
10 |
SAWAI R , PAIK I , KUWANA A . Sentence augmentation for language translation using GPT-2[J]. Electronics, 2021, 10 (24): 3082.
doi: 10.3390/electronics10243082
|
11 |
SHOEIBI N , SHOEIBI N , HERNÁNDEZG , et al. AI-crime hunter: an AI mixture of experts for crime discovery on twitter[J]. Electronics, 2021, 10 (24): 3081.
doi: 10.3390/electronics10243081
|
12 |
KIM G , CHOI L , LI Q L , et al. A CNN-based advertisement recommendation through real-time user face recognition[J]. Applied Sciences, 2021, 11 (20): 9705.
doi: 10.3390/app11209705
|
13 |
ARSHAGHI A , ASHOURIN M , GHABE-LI L . Detection and classification of potato diseases potato using a new convolution neural network architecture[J]. Traitement du Signal: Signal Image Parole, 2021, 38 (6): 1783- 1791.
doi: 10.18280/ts.380622
|
14 |
CHOW B H Y , REYES-ALDASORO C C . Automatic gemstone classification using Computer Vision[J]. Minerals, 2021, 12 (1): 60.
|
15 |
FALTINGS U , BETTINGER T , BARTH S , et al. Impact on inference model performance for ml tasks using real-life training data and synthetic training data from GANs[J]. Information, 2021, 13 (1): 9.
doi: 10.3390/info13010009
|
16 |
HUANG J X , LIU Q T , ZHENG Y X , et al. Chinese comma disambiguation in math word problems using SMOTE and random forests[J]. AI, 2021, 2 (4): 738- 755.
doi: 10.3390/ai2040044
|
17 |
BAO T , REN N , LUO R , et al. A BERT-based hybrid short text classification model incorporating CNN and attention-based BiGRU[J]. Journal of Organizational and End User Computing, 2021, 33 (4): 1485- 1505.
|
18 |
GE S G , RUM S N M . Key points' location in infrared images of the human body based on MSCF-ResNet[J]. Future Internet, 2021, 14 (1): 15.
doi: 10.3390/fi14010015
|
19 |
CAMPS O , AL-CHAWA M M , STAVRINIDES S G , et al. Stochastic computing emulation of memristor cellular nonlinear networks[J]. Micromachines, 2021, 13 (1): 67.
doi: 10.3390/mi13010067
|
20 |
LI H W , MAO H Y , WANG J Z . Part-of-speech tagging with rulebased data preprocessing and transformer[J]. Electronics, 2022, 11 (1): 56.
|
21 |
ALTURAYEIF N , LUQMAN H . Fine-grained sentiment analysis of arabic COVID-19 tweets using BERT-based transfor-mers and dynamically weighted loss function[J]. Applied Sciences, 2021, 11 (22): 10694.
doi: 10.3390/app112210694
|
22 |
BOMBIERI M , ROSPOCHER M , DALL'ALBA D , et al. Automatic detection of procedural knowledge in robotic-assisted surgical texts[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16 (8): 1287- 1295.
doi: 10.1007/s11548-021-02370-9
|
23 |
YANG T J , BAI X H , CUI X J , et al. TransDIR: deformable imaging registration network based on transformer to improve the feature extraction ability[J]. Medical physics, 2021, 49 (2): 952- 965.
|
24 |
PANBOONYUEN T , THONGBAI S , WO-NGWEERANIMIT W , et al. Object detection of road assets using transformer-based YOLOX with feature pyramid decoder on thai highway panorama[J]. Information, 2021, 13 (1): 5.
doi: 10.3390/info13010005
|
25 |
ILIADIS L A , NIKOLAIDIS S , SARIGI-ANNIDIS P , et al. Artwork style recognition using vision transformers and MLPMixer[J]. Technologies, 2021, 10 (1): 2.
doi: 10.3390/technologies10010002
|
26 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2022-11-09]. https://arxiv.org/abs/1706.03762.
|
27 |
SUN H , LIU J Q , CHAI S R , et al. Multimodal adaptive fusion transformer network for the estimation of depression level[J]. Sensors, 2021, 21 (14): 4764.
doi: 10.3390/s21144764
|
28 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognitionat scale[EB/OL]. [2022-11-09]. https://arxiv.org/abs/2010.11929.
|
29 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformerusing shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002.
|
30 |
XU X K , FENG Z J , CAO C Q , et al. An improved swin transformer-based model for remote sensing object detectionand instance segmentation[J]. Remote Sensing, 2021, 13 (23): 4779.
doi: 10.3390/rs13234779
|
31 |
LEE J W , LEE S J , CHO W K , et al. Vision transformer-based tailing detection in videos[J]. Applied Sciences, 2021, 11 (24): 11591.
doi: 10.3390/app112411591
|
32 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pretraining of deep bidirectional transformers for language understanding[EB/OL]. [2022-11-09]. https://arxiv.org/abs/1810.04805.
|