系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (3): 859-867.doi: 10.12305/j.issn.1001-506X.2024.03.11

• 传感器与信号处理 • 上一篇    下一篇

基于纯自注意力机制的毫米波雷达手势识别

张春杰1,2,*, 王冠博1,2, 陈奇1,2, 邓志安1,2   

  1. 1. 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
    2. 先进船舶通信与信息技术工业和信息化部重点实验室, 黑龙江 哈尔滨 150001
  • 收稿日期:2022-11-18 出版日期:2024-02-29 发布日期:2024-03-08
  • 通讯作者: 张春杰
  • 作者简介:张春杰(1975—), 女, 副教授, 博士, 主要研究方向为主/被动雷达信号处理
    王冠博(1998—), 男, 硕士研究生, 主要研究方向为毫米波雷达信号处理
    陈奇(1999—), 男, 硕士研究生, 主要研究方向为毫米波雷达信号处理
    邓志安(1985—), 男, 副教授, 博士, 主要研究方向为智能辐射源信号处理、协同侦察
  • 基金资助:
    黑龙江省自然科学基金联合引导项目(LH2020F019);中央高校基本科研业务费基金(3072022TS0802)

Gesture recognition based on millimeter-wave radar with pure self-attention mechanism

Chunjie ZHANG1,2,*, Guanbo WANG1,2, Qi CHEN1,2, Zhi'an DENG1,2   

  1. 1. School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
    2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin 150001, China
  • Received:2022-11-18 Online:2024-02-29 Published:2024-03-08
  • Contact: Chunjie ZHANG

摘要:

在构建智慧控制, 万物互联的背景下, 通过手势远程控制设备, 进行人机交互逐渐成为研究热点。对此, 提出了一种以毫米波雷达为传感器, 采用基于纯自注意力机制模型实现手势识别的方法。首先, 采集正面视角的13类手势的时序回波数据。接着,对数据进行三维快速傅里叶变换(three-dimension fast Fourier transform, 3D-FFT)、动目标显示(moving target indication, MTI)、恒虚警率(constant false alarm rate, CFAR)检测操作并进行固定种类特征提取, 将这些特征传入基于纯自注意力机制网络的雷达特征变换(radar feature transformer, RFT)网络。最后, 基于实测数据完成了数据特征提取、网络训练、手势识别等步骤。实验结果表明, 所提方法在测试集上准确率达到95.38%, 网络训练时间短, 模型复杂度低, 泛化性好, 为现有研究提供了新的研究思路。

关键词: 毫米波雷达, 手势识别, 自注意力机制, 噪声抑制

Abstract:

In the context of building intelligent control and the internet of everything, remote control of devices through hand gestures for human-computer interaction has gradually become a research hotspot. For this, a gesture recognition method based on pure self-attention mechanism model with millimeter-wave radar as sensor is proposed. Firstly, the time sequence echo data of 13 kinds of gestures from the front-view direction is collected. Then, three-dimension fast Fourier transform (3D-FFT), moving target indication (MTI) and constant false alarm rate (CFAR) detector operations are carried out on the data and fixed type Feature extraction. These features are introduced into radar feature transformer (RFT) based network. Finally, based on the measured data, the steps of data feature extraction, network training, gesture recognition and so on are completed. The experimental results show that the accuracy rate of the proposed method in the test dataset is 95.38%. Moreover, it has the characteristics of short metwork training time, low model complexity and good generalization, which provides a new research idea for the existing research.

Key words: millimeter-wave radar, gesture recognition, self-attention mechanism, noise suppression

中图分类号: