系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (3): 849-858.doi: 10.12305/j.issn.1001-506X.2024.03.10
杨德贵, 许道峰
收稿日期:
2022-11-23
出版日期:
2024-02-29
发布日期:
2024-03-08
通讯作者:
杨德贵
作者简介:
杨德贵(1978—), 男, 教授, 博士, 主要研究方向为雷达与光学目标特性、雷达电子对抗、雷达信号处理Degui YANG, Daofeng XU
Received:
2022-11-23
Online:
2024-02-29
Published:
2024-03-08
Contact:
Degui YANG
摘要:
冲激脉冲(impulse radio, IR)超宽带(ultra-wideband, UWB)穿墙雷达因其良好的穿透性和距离分辨率在穿墙人体行为识别领域具有重要作用, 但是常规识别方法仅采用单域特征对行为模式进行描述, 识别准确率不高。针对这一问题, 提出基于时频域特征融合的IR-UWB穿墙雷达人体行为识别算法。首先, 通过杂波抑制及距离补偿方法获取高信噪比的人体行为距离像。其次, 基于距离像提取目标时域特征, 与频域特征进行融合, 构建数据集。最后, 基于支持向量机(support vector machine, SVM)算法对人体行为进行识别。实验结果表明, 所提算法对于IR-UWB穿墙雷达人体行为识别能够达到95%的准确率。
中图分类号:
杨德贵, 许道峰. 基于时频域特征融合的IR-UWB穿墙雷达人体行为识别方法[J]. 系统工程与电子技术, 2024, 46(3): 849-858.
Degui YANG, Daofeng XU. Human behavior recognition method of IR-UWB through wall radar based on time-frequency domain feature fusion[J]. Systems Engineering and Electronics, 2024, 46(3): 849-858.
1 |
LIU J L , WANG L , FANG J , et al. Multi-target intense human motion analysis and detection using channel state information[J]. Sensors, 2018, 18 (10): 3379- 3386.
doi: 10.3390/s18103379 |
2 | AMIN M G . Radar for indoor monitoring: detection, classification, and assessment[M]. London: CRC Press, 2018. |
3 |
王彩云, 姚晨, 吴钇达, 等. 基于改进Dijkstra算法与时频域滤波的雷达目标识别[J]. 系统工程与电子技术, 2022, 44 (10): 3090- 3095.
doi: 10.12305/j.issn.1001-506X.2022.10.12 |
WANG C Y , YAO C , WU Y D , et al. Radar target recognition based on improved Dijkstra algorithm with time frequency domain filtering[J]. Systems Engineering and Electronics, 2022, 44 (10): 3090- 3095.
doi: 10.12305/j.issn.1001-506X.2022.10.12 |
|
4 |
王彩云, 黄盼盼, 李晓飞, 等. 基于AEPSO-SVM算法的雷达HRRP目标识别[J]. 系统工程与电子技术, 2019, 41 (9): 1984- 1989.
doi: 10.3969/j.issn.1001-506X.2019.09.10 |
WANG C Y , HUANG P P , LI X F , et al. Radar HRRP target recognition based on AEPSO-SVM algorithm[J]. Systems Engineering and Electronics, 2019, 41 (9): 1984- 1989.
doi: 10.3969/j.issn.1001-506X.2019.09.10 |
|
5 |
YANG D G , ZHU Z L , ZHANG J C , et al. The overview of human localization and vital sign signal measurement using handheld IR-UWB through-wall radar[J]. Sensors, 2021, 21 (2): 402.
doi: 10.3390/s21020402 |
6 | ZHU Z L, YANG D G, LIANG B G. Vital sign signal extraction method based on permutation entropy and EMD algorithm for ultra-wideband radar[C]//Proc. of the 3rd International Conference on Electronic Information Technology and Computer Engineering, 2019. |
7 |
孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44 (6): 1839- 1845.
doi: 10.12305/j.issn.1001-506X.2022.06.09 |
SUN J M , YU S K , SUN J . Radar small sample target recognition method based on meta learning and its improvement[J]. Systems Engineering and Electronics, 2022, 44 (6): 1839- 1845.
doi: 10.12305/j.issn.1001-506X.2022.06.09 |
|
8 |
晏媛, 孙俊, 孙晶明, 等. 雷达小样本目标识别方法及应用分析[J]. 系统工程与电子技术, 2021, 43 (3): 684- 692.
doi: 10.19665/j.issn1001-2400.2021.02.002 |
YAN Y , SUN J , SUN J J , et al. Radar few shot target recognition method and application analysis[J]. Systems Engineering and Electronics, 2021, 43 (3): 684- 692.
doi: 10.19665/j.issn1001-2400.2021.02.002 |
|
9 | 王兆其. 虚拟人合成研究综述[J]. 中国科学院研究生院学报, 2000, 17 (2): 89- 98. |
WANG Z Q . A review of research on virtual human synthesis[J]. Journal of Graduate School, Academia Sinica, 2000, 17 (2): 89- 98. | |
10 |
DORP P , GROEN F C A . Human walking estimation with radar[J]. IEEE Proceedings Radar, Sonar and Navigation, 2003, 150 (5): 356- 365.
doi: 10.1049/ip-rsn:20030568 |
11 | DORP P V , GROEN F C A . Feature-based human motion parameter estimation with radar[J]. IET Radar, Sonar & Navigation, 2008, 2 (2): 135- 145. |
12 | CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21. |
13 |
ZHU Z L , YANG D G , ZHANG J C , et al. Dataset of human motion status using IR-UWB through wall radar[J]. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1083- 1096.
doi: 10.23919/JSEE.2021.000093 |
14 | WU Q , ZHANG Y D , TAO W , et al. Radar based fall detection based on Doppler time frequency signatures for assisted living[J]. IET Radar, Sonar & Navigation, 2015, 9 (2): 164- 172. |
15 | SUN Z S, WANG J, SUN J P, et al. Parameter estimation method of walking human based on radar micro-Doppler[C]//Proc. of the IEEE Radar Conference, 2017: 567-570. |
16 | 张军. 多站低频雷达运动人体微多普勒特征提取与跟踪技术[D]. 长沙: 国防科技大学, 2017. |
ZHANG J. Technique of human micro-Doppler feature extraction and tracking with multi-station low frequency radar[D]. Changsha: National University of Defense Technology, 2017. | |
17 |
OROVIC' I , STANKOVIC' S , AMIN M G . A new approach for classification of human gait based on time-frequency feature representations[J]. Signal Processing, 2011, 91 (6): 1448- 1456.
doi: 10.1016/j.sigpro.2010.08.013 |
18 |
DING C W , ZHANG L , CHEN H , et al. Human motion re-cognition with spatial-temporal-convLSTM network using dynamic range-Doppler frames based on portable FMCW radar[J]. IEEE Trans.on Microwave Theory Technology, 2022, 70 (11): 5029- 5038.
doi: 10.1109/TMTT.2022.3200097 |
19 |
DING C W , HONG H , ZOU Y , et al. Continuous human motion recognition with a dynamic range-Doppler trajectory method based on FMCW radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 6821- 6831.
doi: 10.1109/TGRS.2019.2908758 |
20 |
DING C W , CHAE R , WANG J , et al. Inattentive driving behavior detection based on portable FMCW radar[J]. IEEE Trans.on Microwave Theory Technology, 2019, 67 (10): 4031- 4041.
doi: 10.1109/TMTT.2019.2934413 |
21 |
REN L Y , TRAN N , FARNAZ F , et al. Short-time state-space method for micro-Doppler identification of walking subject using UWB impulse Doppler radar[J]. IEEE Trans.on Microwave Theory Technology, 2018, 66 (7): 3521- 3534.
doi: 10.1109/TMTT.2018.2829523 |
22 |
YAO Y R , LIU W B , ZHANG G , et al. Radar-based human activity recognition using hyperdimensional computing[J]. IEEE Trans.on Microwave Theory Technology, 2022, 70 (3): 1605- 1619.
doi: 10.1109/TMTT.2021.3134992 |
23 |
SADREAZAMI H , BOLIC M , RAJAN S . Contactless fall detection using time-frequency analysis and convolutional neural networks[J]. IEEE Trans.on Industrial Informatics, 2021, 17 (10): 6842- 6851.
doi: 10.1109/TII.2021.3049342 |
24 |
KIM Y , LING H . Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Trans.on Geoscience and Remote Sensing, 2009, 47 (5): 1328- 1337.
doi: 10.1109/TGRS.2009.2012849 |
25 |
JOKANOVIC' B , Amin M G . Suitability of data representation domains in expressing human motion radar signals[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (12): 2370- 2374.
doi: 10.1109/LGRS.2017.2765341 |
26 | AMIN M G , AHMAD F , ZHANG Y D , et al. Human gait recognition with cane assistive device using quadratic time-frequency distributions[J]. IET Radar, Sonar & Navigation, 2015, 9, 1224- 1230. |
27 |
孙忠胜, 王俊, 毕严先, 等. 基于广义S变换的多人微多普勒特征分析[J]. 系统工程与电子技术, 2014, 36 (7): 1291- 1297.
doi: 10.3969/j.issn.1001-506X.2014.07.11 |
SUN Z S , WANG J , BI Y X , et al. Analysis of multi human micro Doppler signatures based on generalized S transform[J]. Systems Engineering and Electronics, 2014, 36 (7): 1291- 1297.
doi: 10.3969/j.issn.1001-506X.2014.07.11 |
|
28 | CHANG C C , LIN C J . LibSVM: a library for support vector machines[J]. ACM Trans.on Intelligent Systems and Technology, 2011, 2 (3): 1- 27. |
29 | HSU C W , LIN C J . A comparison of methods for multi-class support vector machines[J]. IEEE Trans.on Neural Networks, 2002, 13 (2): 415- 425. |
30 | 杜浩. 基于深度学习的超宽带雷达人体行为辨识研究[D]. 长沙: 国防科技大学, 2020. |
DU H. Research on deep learning-based human behavior recognition in ultra-wideband radar[D]. Changsha: National University of Defense Technology, 2020. | |
31 | 蒋留兵, 李骢, 车俐. 超宽带雷达人体动作识别[J]. 电子测量与仪器学报, 2018, 32 (1): 129- 134. |
JIANG L B , LI C , CHE L . Human motion recognition by-ultra-wide band radar[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32 (1): 129- 134. |
[1] | 焦志强, 易侃, 张杰勇, 姚佩阳. 不平衡数据下基于SVM增量学习的指挥信息系统状态监控方法[J]. 系统工程与电子技术, 2024, 46(3): 992-1003. |
[2] | 赵晓枫, 牛家辉, 刘春桐, 夏玉婷. 基于三维注意力与混合卷积的高光谱图像分类[J]. 系统工程与电子技术, 2023, 45(9): 2673-2680. |
[3] | 方伟, 梁静雯, 陆恒杨. 基于聚类锦标赛与父代匹配的遗传规划算法[J]. 系统工程与电子技术, 2023, 45(8): 2405-2414. |
[4] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
[5] | 杨帆, 马萍, 李伟, 杨明. 基于孪生网络的仿真模型智能排序评估方法[J]. 系统工程与电子技术, 2023, 45(7): 2060-2068. |
[6] | 刘丹阳, 吴堃, 朱永锋, 张永杰, 周剑雄. 地面目标HRRP识别的稳健性特征选择方法[J]. 系统工程与电子技术, 2023, 45(12): 3726-3733. |
[7] | 李波, 胡哿郗, 石剑钧, 刘恒畅, 洪涛. 基于多惩罚因子优化VMD的滚动轴承故障特征提取方法[J]. 系统工程与电子技术, 2023, 45(11): 3690-3698. |
[8] | 刘佳, 徐群玉, 陈唯实. 无人机雷达航迹运动特征提取及组合分类方法[J]. 系统工程与电子技术, 2023, 45(10): 3122-3131. |
[9] | 马泽煊, 李进, 路艳丽, 陈晨. 融合WaveNet和BiGRU的网络入侵检测方法[J]. 系统工程与电子技术, 2022, 44(8): 2652-2660. |
[10] | 李郝亮, 陈思伟, 王雪松. 海面角反射器的极化旋转域特性研究[J]. 系统工程与电子技术, 2022, 44(7): 2065-2073. |
[11] | 薛春岭, 曹菲, 孙庆, 秦建强, 冯晓伟. 基于多特征信息融合的海面微弱目标检测[J]. 系统工程与电子技术, 2022, 44(11): 3338-3345. |
[12] | 朱峰, 蒋倩倩, 林川, 杨啸. 基于支持向量机的典型宽带电磁干扰源识别[J]. 系统工程与电子技术, 2021, 43(9): 2400-2406. |
[13] | 李昂, 聂党民, 温祥西, 王泽坤, 杨诚修. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. |
[14] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. |
[15] | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43(3): 603-609. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||