1 |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959.
|
|
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959.
|
2 |
MIAO T , ZENG H C , YANG W , et al. An improved lightweight retinaNet for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4667- 4679.
doi: 10.1109/JSTARS.2022.3180159
|
3 |
RIZAEV I G , KARAKUŞ O , HOGAN S J , et al. Modeling and SAR imaging of the sea surface: a review of the state-of-the-art with simulations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 120- 140.
doi: 10.1016/j.isprsjprs.2022.02.017
|
4 |
YU J M , WU T , ZHOU S B , et al. An SAR ship object detection algorithm based on feature information efficient representation network[J]. Remote Sensing, 2022, 14 (14): 3489.
doi: 10.3390/rs14143489
|
5 |
DENG Y W, GUAN D H, CHEN Y Y, et al. SAR-Shipnet: SAR-ship detection neural network via bidirectional coordinate attention and multi-resolution feature fusion[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2022: 3973-3977.
|
6 |
LI W K, ZOU B, XIN Y, et al. An improved CFAR scheme for man-made target detection in high resolution SAR images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 2829-2832.
|
7 |
ZHU J W , QIU X L , PAN Z X , et al. Projection shape template-based ship target recognition in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 14 (2): 222- 226.
|
8 |
YANG G Z , YU J , SUN W D . Ship wake detection in SAR images with complex backgrounds based on relative total variation[J]. Journal of University of Chinese Academy of Sciences, 2017, 34 (6): 734- 742.
|
9 |
GAO G , OUYANG K W , LUO Y B , et al. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 55 (3): 1812- 1832.
|
10 |
LENG X G , JI K F , YANG K , et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (7): 1536- 1540.
doi: 10.1109/LGRS.2015.2412174
|
28 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
29 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
|
30 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
31 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
32 |
ZHANG T W , ZHANG X L , LI J W , et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690
|
11 |
SHI Z W , YU X R , JIANG Z G , et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 52 (8): 4511- 4523.
|
12 |
HE K M, CHEN X L, XIE S N, et al. Masked autoencoders are scalable vision learners[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 16000-16009.
|
13 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
14 |
孙方伟, 李承阳, 谢永强, 等. 深度学习应用于遮挡目标检测算法综述[J]. 计算机科学与探索, 2022, 16 (6): 1243- 1259.
|
|
SUN F W , LI C Y , XIE Y Q , et al. Review of deep learning applied to occluded object detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (6): 1243- 1259.
|
15 |
LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C]//Proc. of the European Conference on Computer Vision, 2018: 734-750.
|
16 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
|
17 |
周晓玲, 张朝霞, 鲁雅, 等. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44 (4): 1202- 1209.
|
|
ZHOU X L , ZHANG Z X , LU Y , et al. SAR image recognition based on improved R-FCN[J]. Systems Engineering and Electronics, 2022, 44 (4): 1202- 1209.
|
18 |
LI Y G , ZHU W G , LI C X , et al. SAR image near-shore ship target detection method in complex background[J]. International Journal of Remote Sensing, 2023, 44 (3): 924- 952.
doi: 10.1080/01431161.2023.2173030
|
19 |
JIA X Y, WANG H Q, WANG M, et al. SAR image ship target detection based on sea-land segmentation and YOLO anchor free[C]//Proc. of the 14th International Conference on Machine Vision, 2022, 12084: 200-207.
|
20 |
杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11 (5): 884- 896.
|
|
DU L , WANG Z L , GUO Y C , et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11 (5): 884- 896.
|
21 |
苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42 (5): 1026- 1034.
|
|
SU J , YANG L , HUANG H , et al. Improved SSD algorithm for small-sized SAR ship detection[J]. Systems Engineering and Electronics, 2020, 42 (5): 1026- 1034.
|
22 |
李丽圆, 李潇雁, 胡琸悦, 等. 基于回归模型与注意力的轻量化SAR舰船检测模型[J]. 红外与毫米波学报, 2022, 41 (3): 618- 625.
|
|
LI L Y , LI X Y , HU Z Y , et al. The research on lightweight SAR ship detection method based on regression model and attention[J]. Journal of Infrared and Millimeter Waves, 2022, 41 (3): 618- 625.
|
23 |
郑子阳, 张婷, 刘兆英, 等. 基于旋转损失函数RCIOU的SAR图像舰船目标检测方法[J]. 山东大学学报(工学版), 2022, 52 (2): 15- 22.
|
|
ZHENG Z Y , ZHANG T , LIU Z Y , et al. Ship target detection in SAR images based on RCIoU loss function[J]. Journal of Shandong University(Engineering Science), 2022, 52 (2): 15- 22.
|
24 |
韩子硕, 王春平, 付强. 基于深层次特征增强网络的SAR图像舰船检测[J]. 北京理工大学学报自然版, 2021, 41 (9): 1006- 1014.
|
|
HAN Z S , WANG C P , FU Q . Ship detection in SAR images based on deep feature enhancement network[J]. Transactions of Beijing Institute of Technology, 2021, 41 (9): 1006- 1014.
|
25 |
ZHANG T W , ZHANG X L , KE X . Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13 (14): 2771.
doi: 10.3390/rs13142771
|
26 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
27 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
|