系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (3): 839-848.doi: 10.12305/j.issn.1001-506X.2024.03.09

• 传感器与信号处理 • 上一篇    下一篇

基于全局位置信息和残差特征融合的SAR船舶检测算法

方小宇1,2,3, 黄丽佳1,2,3,*   

  1. 1. 中国科学院空天信息创新研究院, 北京 100190
    2. 中国科学院空间信息处理与应用系统技术重点实验室, 北京 100190
    3. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2022-11-22 出版日期:2024-02-29 发布日期:2024-03-08
  • 通讯作者: 黄丽佳
  • 作者简介:方小宇(1998—), 男, 硕士研究生, 主要研究方向为SAR图像船舶目标检测
    黄丽佳(1984—), 女, 研究员, 博士, 主要研究方向为SAR成像处理和理解
  • 基金资助:
    中国科学院青年创新促进会(2019127)

SAR ship detection algorithm based on global position information and fusion of residual feature

Xiaoyu FANG1,2,3, Lijia HUANG1,2,3,*   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
    2. Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China
    3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-11-22 Online:2024-02-29 Published:2024-03-08
  • Contact: Lijia HUANG

摘要:

针对合成孔径雷达(synthetic aperture radar, SAR)图像船舶目标尺度不一且易受海面、地面杂波和相干斑噪声的影响, 难以提取目标多维特征且特征融合过程中易产生语义歧义, 造成船舶目标检测率低, 虚警率高的问题, 提出一个基于全局位置信息和残差特征融合的SAR船舶目标检测算法。基于Faster区域卷积神经网络(region convolutional neural network, R-CNN)目标检测算法, 在特征提取网络和特征融合网络中进行改进: 在特征提取网络中使用高宽注意力机制提取目标在图像中的全局位置信息, 增强目标的多维特征提取能力; 在特征融合网络中使用带有残差连接的双向特征金字塔网络削弱特征融合过程中的语义歧义, 降低复杂背景下的船舶目标虚警率, 同时进行不同层级的多尺度特征双向融合, 增强高低层特征的联系, 提升多尺度船舶目标的检测能力。在SAR船舶数据集上达到98.2%的均值平均精度, 超过部分算法2.4%以上。实验表明, 所提算法有效提取了目标的多维特征, 显著缓解了语义歧义问题, 具有较好的检测能力和泛化能力。

关键词: 合成孔径雷达, 船舶检测, 注意力机制, 特征金字塔网络, 残差连接

Abstract:

In view of the problem that ship targets in synthetic aperture radar (SAR) images have varying scales and are easily affected by sea clutter, ground clutter, and coherent speckle noise, which makes it difficult to extract target multidimensional features and leads to semantic ambiguity during feature fusion, resulting in low ship target detection rate and high false alarm rate, a SAR ship target detection algorithm based on global position information and residual feature fusion is proposed. Based on the Faster region convolutional neural network (R-CNN) object detection algorithm, improvements are made in the feature extraction network and feature fusion network. A height-width attention mechanism is used in the feature extraction network to extract the global position information of the target in the image, enhancing the multidimensional feature extraction capability of the target. A bidirectional feature pyramid network with residual connections is used in the feature fusion network to reduce semantic ambiguity in the feature fusion process, reduce false alarms of ship targets in complex backgrounds, and perform bidirectional fusion of multi-scale features at different levels to enhance the connection between high and low-level features and improve the detection capability of multi-scale ship targets. The algorithm achieves a mean average precision of 98.2% on the SAR ship dataset, surpassing some algorithms by 2.4% or more. The experiments show that the proposed algorithm effectively extracts multidimensional features of the target, significantly alleviates semantic ambiguity problems, and has good detection and generalization capabilities.

Key words: synthetic aperture radar (SAR), ship detection, attention mechanism, feature pyramid network, residual connection

中图分类号: