1 |
ELDHUSET K . An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Trans.on Geoscience and Remote Sensing, 1996, 34 (4): 1010- 1019.
doi: 10.1109/36.508418
|
2 |
ZHANG T W , ZHANG X L . High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11 (10): 1206.
doi: 10.3390/rs11101206
|
3 |
CRISP J D . The state-of-the-art in ship detection in synthetic aperture radar imagery[M]. Edinburgh, Australia: DSTO Information Sciences Laboratory, 2004.
|
4 |
NOVAK L M , OWIRKA G J , BROWER W S , et al. The automatic target recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10 (2): 187- 202.
|
5 |
CUI X C , SU Y , CHEN S W . A saliency detector for polarimetric SAR ship detection using similarity test[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (9): 3423- 3433.
doi: 10.1109/JSTARS.2019.2925833
|
6 |
ZHANG T W , ZHANG X L , KE X , et al. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12 (18): 2997.
doi: 10.3390/rs12182997
|
7 |
ZHANG T W , ZHANG X L , SHI J , et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4004905.
|
8 |
雷禹, 冷祥光, 周晓艳, 等. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44 (12): 3652- 3660.
|
|
LEI Y , LENG X G , ZHOU X Y , et al. Recognition method of ship target in complex SAR image based on improved ResNet network[J]. Systems Engineering and Electronics, 2022, 44 (12): 3652- 3660.
|
9 |
李男, 叶晓东, 王昊, 等. 基于改进YOLOv5的复杂场景下SAR图像船舶检测方法[J]. 信号处理, 2022, 38 (5): 1009- 1018.
|
|
LI N , YE X D , WANG H , et al. A ship detection method for SAR images in complex scene based on improved YOLOv5[J]. Journal of Signal Processing, 2022, 38 (5): 1009- 1018.
|
10 |
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding yolo series in 2021[EB/OL]. [2022-11-30]. https://doi.org/10.48550/arXiv.2107.08430 (2021).
|
11 |
ZHANG T W , ZHANG X , LIU C , et al. Balance learning for ship detection from synthetic aperture radar remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, 190- 207.
doi: 10.1016/j.isprsjprs.2021.10.010
|
12 |
ZHANG T W , ZHANG X L . A mask attention interaction and scale enhancement network for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4511005.
|
13 |
WEI S J , ZENG X F , QU Q X , et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8, 120234- 120254.
doi: 10.1109/ACCESS.2020.3005861
|
14 |
ZHAO D P , ZHU C B , QI J , et al. Synergistic attention for ship instance segmentation in SAR images[J]. Remote Sensing, 2021, 13 (21): 4384.
doi: 10.3390/rs13214384
|
15 |
ZHANG T W , ZHANG X . HTC+ for SAR ship instance segmentation[J]. Remote Sensing, 2022, 14 (10): 2395.
doi: 10.3390/rs14102395
|
16 |
CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4969-4978.
|
17 |
LIN T Y, DOLLAR P, GIRSHICK P, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
18 |
ZHANG T W , ZHANG X L , SHI J , et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11 (21): 2483.
doi: 10.3390/rs11212483
|
19 |
ZHANG T W , ZHANG X L , SHI J , et al. HyperLi-Net: a hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167, 123- 153.
doi: 10.1016/j.isprsjprs.2020.05.016
|
20 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848.
|
21 |
SHAO Z K, ZHANG T W, ZHANG X L. GAN with ASPP for SAR image to optical image conversion[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 3355-3358.
|
22 |
ZHANG T W , ZHANG X . Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 4019905.
|
23 |
WANG Z , WANG B H , XU N , et al. SAR ship detection in complex background based on multi-feature fusion and non-local channel attention mechanism[J]. International Journal of Remote Sensing, 2021, 42 (19): 7519- 7550.
doi: 10.1080/01431161.2021.1963003
|
24 |
ZHANG T W , ZHANG X L , KE X . Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13 (14): 2771.
doi: 10.3390/rs13142771
|
25 |
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
|
26 |
ZHANG T W , ZHANG X L , LI J W , et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690
|
27 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
28 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
29 |
ZHANG T W , ZHANG X . A polarization fusion network with geometric feature embedding for SAR ship classification[J]. Pattern Recognition, 2022, 123, 108365.
doi: 10.1016/j.patcog.2021.108365
|
30 |
ZHANG T W , ZHANG X . Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: what, why, where, and how[J]. Remote Sensing, 2021, 13 (11): 2091.
doi: 10.3390/rs13112091
|
31 |
ZHANG T W, ZHANG X, SHI J, et al. High-speed ship detection in SAR images by improved yolov3[C]//Proc. of the 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2019: 149-152.
|
32 |
ZHANG T W , ZHANG X . ShipDeNet-20: an only 20 convolution layers and < 1-MB lightweight SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (7): 1234- 1238.
|
33 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proc. of the European Confe-rence on Computer Vision, 2014: 740-755.
|
34 |
张天文, 张晓玲, 邵子康, 等. 全等级上下文压缩激励的SAR舰船实例分割[J]. 电子科技大学学报, 2023, 52 (3): 357- 365.
|
|
ZHANG T W , ZHANG X L , SHAO Z K , et al. A full-level context squeeze-and-excitation ROI extractor for SAR ship instance segmentation[J]. Journal of University of Electronic Science and Technology of China, 2023, 52 (3): 357- 365.
|
35 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
36 |
HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 6409-6418.
|
37 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
38 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
|
39 |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: realtime instance segmentation[C]//Proc. of the IEEE International Conference on Computer Vision, 2019: 9156-9165.
|
40 |
ROSSI L, KARIMI A, PRATI A. A novel region of interest extraction layer for instance segmentation[C]//Proc. of the 25th International Conference on Pattern Recognition, 2021: 2203-2209.
|
41 |
SU H , WEI S J , LIU S , et al. HQ-ISNet: high-quality instance segmentation for remote sensing imagery[J]. Remote Sensing, 2020, 12 (6): 989.
doi: 10.3390/rs12060989
|
42 |
ZHAO D P , ZHU C B , QI J , et al. Synergistic attention for ship instance segmentation in SAR images[J]. Remote Sensing, 2021, 13 (21): 4384.
|