系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (3): 831-838.doi: 10.12305/j.issn.1001-506X.2024.03.08

• 传感器与信号处理 • 上一篇    下一篇

基于掩模注意型交互的SAR舰船实例分割

张天文1, 张晓玲1,*, 邵子康1, 曾天娇2   

  1. 1. 电子科技大学信息与通信工程学院, 四川 成都 611731
    2. 电子科技大学航空航天学院, 四川 成都 611731
  • 收稿日期:2022-12-14 出版日期:2024-02-29 发布日期:2024-03-08
  • 通讯作者: 张晓玲
  • 作者简介:张天文(1994—), 男, 高级工程师, 博士, 主要研究方向为雷达目标检测识别跟踪、SAR图像智能解译
    张晓玲(1964—), 女, 教授, 博士, 主要研究方向为深度学习、合成孔径雷达、雷达探测技术研究、三维SAR的目标散射特性反演
    邵子康(1999—), 男, 硕士研究生, 主要研究方向为深度学习、合成孔径雷达
    曾天娇(1993—), 女, 讲师, 博士, 主要研究方向为深度学习、合成孔径雷达成像
  • 基金资助:
    国家自然科学基金(61571099)

Mask attention interaction for SAR ship instance segmentation

Tianwen ZHANG1, Xiaoling ZHANG1,*, Zikang SHAO1, Tianjiao ZENG2   

  1. 1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
    2. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2022-12-14 Online:2024-02-29 Published:2024-03-08
  • Contact: Xiaoling ZHANG

摘要:

现有合成孔径雷达(synthetic aperture radar, SAR)舰船实例分割方法未实现掩模交互或交互性能有限, 导致检测精度较低。针对上述问题, 提出了一种基于掩模注意型交互(mask attention interaction, MAI)的SAR舰船实例分割方法MAI-Net。首先, MAI-Net使用了膨胀空间金字塔池化, 来获取多分辨率特征响应, 增强了对背景的鉴别能力。其次, MAI-Net使用了非局部注意力模块来抑制低价值信息, 实现了空间特征自注意。最后, MAI-Net提出了拼接混洗注意力模块来平衡不同特征图的贡献, 进一步提高了实例分割精度。在公开的像素级多边形分割SAR舰船检测数据集(polygon segmentation SAR ship detection dataset, PSeg-SSDD)上的实验结果表明, MAI-Net的SAR舰船实例分割精度高于现有其他11种对比模型, 实例分割精度达到61.1%, 高于次优模型1.5%。

关键词: 合成孔径雷达, 深度学习, 实例分割, 掩模注意型交互

Abstract:

The current synthetic aperture radar (SAR) ship instance segmentation models fail to realize mask interaction or the interaction performance is limited, resulting in low detection accuracy. To solve this problem, a SAR ship instance segmentation method based on mask attention interaction (MAI) is proposed, called MAI-Net. Firstly, MAI-Net uses the atrous spatial pyramid pooling (ASPP) to obtain multi-resolution feature responses and enhance the background identification capability. Secondly, MAI-Net uses a non-local block (NLB) to suppress useless information and realize spatial feature self-attention. Finally, MAI-Net proposes the concatenation shuffle attention block (CSAB), which can balance the contribution of different features and further improve the instance segmentation accuracy. The results on the public polygon segmentation SAR ship detection dataset (PSeg-SSDD) show that the SAR ship instance segmentation accuracy of MAI-Net is higher than that of the other eleven comparison models, the accuracy is 61.1%, 1.5% higher than the suboptimal model.

Key words: synthetic aperture radar (SAR), deep learning, instance segmentation, mask attention interaction

中图分类号: