系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (3): 824-830.doi: 10.12305/j.issn.1001-506X.2024.03.07

• 传感器与信号处理 • 上一篇    下一篇

基于改进离散模拟退火遗传算法的雷达网协同干扰资源分配模型

尧泽昆1,2,*, 王超1,2, 施庆展1,2, 张少卿3, 袁乃昌1,2   

  1. 1. 国防科技大学电子科学学院, 湖南 长沙 410073
    2. 国防科技大学电子信息系统复杂电磁环境效应国家重点实验室, 湖南 长沙 410073
    3. 中国航空工业集团公司沈阳飞机设计研究所, 辽宁 沈阳 110035
  • 收稿日期:2022-02-28 出版日期:2024-02-29 发布日期:2024-03-08
  • 通讯作者: 尧泽昆
  • 作者简介:尧泽昆(1998—), 男, 硕士研究生, 主要研究方向为电子对抗
    王超(1977—), 男, 副教授, 博士, 主要研究方向为电子系统设计
    施庆展(1990—), 男, 讲师, 博士, 主要研究方向为信号处理
    张少卿(1982—), 男, 高级工程师, 博士, 主要研究方向为协同与指挥
    袁乃昌(1965—), 男, 教授, 博士, 主要研究方向为信号处理、电子系统设计

Cooperative jamming resource allocation model for radar network based on improved discrete simulated annealing genetic algorithm

Zekun YAO1,2,*, Chao WANG1,2, Qingzhan SHI1,2, Shaoqing ZHANG3, Naichang YUAN1,2   

  1. 1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
    2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, China
    3. Shenyang Aircraft Design & Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China
  • Received:2022-02-28 Online:2024-02-29 Published:2024-03-08
  • Contact: Zekun YAO

摘要:

针对分布式干扰机掩护目标突防雷达网背景下的干扰资源分配问题, 提出了一种引入随机密钥的改进离散模拟退火遗传算法(improved discrete simulated annealing genetic algorithm, IDSA-GA)对资源分配过程进行优化。基于雷达网融合检测概率构建干扰效果评估函数, 利用IDSA-GA对函数寻优求解。IDSA-GA在模拟退火遗传算法(simulated annealing genetic algorithm, SA-GA)的基础上引入随机密钥, 完成算法的离散化; 并在迭代的过程中增加记忆功能, 克服了过早收敛的现象。仿真结果表明, 与GA相比, 提出的IDSA-GA收敛迅速, 寻优能力强, 能有效解决干扰资源优化分配问题。

关键词: 雷达网, 协同干扰, 资源分配, 模拟退火遗传算法, 随机密钥

Abstract:

An improved discrete simulated annealing genetic algorithm (IDSA-GA) with random keys is proposed to optimize the resource allocation process in the context of distributed jammers covering target penetration radar networks. An interference effect evaluation function based on the fusion detection probability of radar networks is constructed, and IDSA-GA is used to optimize and solve the function. IDSA-GA introduces random keys on the basis of simulated annealing genetic algorithm (SA-GA) to discretize the algorithm. And during the iteration process, memory function is added to overcome the phenomenon of premature convergence. The simulation results show that compared with GA, the proposed IDSA-GA converges quickly and has strong optimization ability, which can effectively solve the problem of optimizing interference resource allocation.

Key words: radar network, cooperative jamming, resource allocation, simulated annealing genetic algorithm (SA-GA), random keys

中图分类号: