Journal of Systems Engineering and Electronics ›› 2009, Vol. 31 ›› Issue (9): 2200-2207.

• 制导、导航与控制 • 上一篇    下一篇

基于时滞分割法的Markov随机切换系统指数稳定性

赵旭东, 凌明祥, 曾庆双   

  1. 哈尔滨工业大学空间控制与惯性技术研究中心, 黑龙江, 哈尔滨, 150001
  • 收稿日期:2008-09-10 修回日期:2008-10-14 出版日期:2009-09-20 发布日期:2010-01-03
  • 作者简介:赵旭东(1982- ),男,博士研究生,主要研究方向为切换系统和鲁棒控制.E-mail:zxd7777777@126.com

Exponential stability for stochastic Markovian jump systems through time fractioning approach

ZHAO Xu-dong, LING Ming-xiang, ZENG Qing-shuang   

  1. Space Control and Inertial Technology Inst., Harbin Inst. of Technology, Harbin 150001, China
  • Received:2008-09-10 Revised:2008-10-14 Online:2009-09-20 Published:2010-01-03

摘要: 研究了时变时滞满足h1d(t)h2的Itô型随机Markov切换系统的区间时滞相关指数稳定性。基于时滞分割的思想,建立了新颖的Lyapunov-Krasovskii泛函,并引入一些改进的积分等式,以线性矩阵不等式的形式给出了低保守性的区间时滞相关指数稳定条件。最后用几个数值算例说明该结论的有效性及其较低的保守性。

Abstract: The delay-range-dependent exponential stability problems for Itô stochastic Markovian jump linear systems with interval time-varying delays satisfying h1d(t)h2 are investigated.In terms of linear matrix inequalities,a less conservative delay-range-dependent stability condition for Markovian jump systems is proposed by constructing a novel Lyapunov-Krasovskii functional with the idea of partitioning the time delay and introducing new integral-equality approaches.Numerical examples are provided to demonstrate the effectiveness and less conservativeness of the results.

中图分类号: