系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 751-760.doi: 10.12305/j.issn.1001-506X.2024.02.39
• 通信与网络 • 上一篇
刘世豪1, 黄仰超1, 胡航1,*, 司江勃2, 韩蕙竹1, 安琪1
收稿日期:
2022-10-27
出版日期:
2024-01-25
发布日期:
2024-02-06
通讯作者:
胡航
作者简介:
刘世豪(1999—), 男, 硕士研究生, 主要研究方向为无人机辅助边缘计算基金资助:
Shihao LIU1, Yangchao HUANG1, Hang HU1,*, Jiangbo SI2, Huizhu HAN1, Qi AN1
Received:
2022-10-27
Online:
2024-01-25
Published:
2024-02-06
Contact:
Hang HU
摘要:
为提升无人机群辅助边缘计算系统在负载不均衡场景下的性能, 构建了一种新的无人机群边缘计算系统, 利用无人机之间卸载数据来提高计算资源的利用率, 通过联合优化多架无人机的卸载方案、部署和资源分配, 使得系统的时延和能耗加权和最小。该问题高度非凸, 为此提出一种高效的双层优化算法——启发最优评价算法, 上层使用粒子群算法优化无人机位置, 下层在确定位置的情况下使用块坐标下降算法优化无人机的数据卸载和资源分配。仿真结果表明, 所提方案可有效降低系统成本, 与基准策略相比优势明显。
中图分类号:
刘世豪, 黄仰超, 胡航, 司江勃, 韩蕙竹, 安琪. 无人机群辅助边缘计算系统的任务卸载和资源分配联合优化[J]. 系统工程与电子技术, 2024, 46(2): 751-760.
Shihao LIU, Yangchao HUANG, Hang HU, Jiangbo SI, Huizhu HAN, Qi AN. Joint optimization of task offloading and resource allocation for UAV swarm-assisted edge computing systems[J]. Systems Engineering and Electronics, 2024, 46(2): 751-760.
表2
有无位置优化对比"
优化后的无人机位置 | 系统成本 | 随机分布的无人机位置/m | 系统成本 | 节省成本/% |
(907.9, 898.7, 100)m, (1 361.8, 707.5, 100)m(361.5, 1681.9, 100)m, (1 228.5, 1 541.1, 100)m | 201.8 | (22, 510, 100), (1 380, 58, 100), (622, 1 154, 100), (1 079, 1 217, 100) | 231.9 | 13.0 |
(340, 381, 100), (1 981, 3, 100), (949, 1 558, 100), (1 403, 1 875, 100) | 232.8 | 13.3 | ||
(0, 0, 100), (1 000, 0, 100), (0, 2 000, 100), (2 000, 2 000, 100) | 236.2 | 14.6 | ||
(0, 0, 100), (2 000, 0, 100), (0, 2 000, 100), (2 000, 2 000, 100) | 240.7 | 16.2 | ||
(776, 147, 100), (1 775, 277, 100), (363, 1 864, 100), (1 684, 1 066, 100) | 234.1 | 13.8 |
1 |
LIU J , ZHOU A , LIU C H , et al. Reliability-enhanced task offloading in mobile edge computing environments[J]. IEEE Internet of Things Journal, 2022, 9 (13): 10382- 10396.
doi: 10.1109/JIOT.2021.3115807 |
2 | 吴启晖, 王然, 黄振炎. 物联网的一种新范式: 智能频联网[J]. 物联网学报, 2018, 2 (1): 35- 41. |
WU Q H , WANG R , HUANG Z Y . A new paradigm of Internet of things: intelligent frequency networking[J]. Chinese Journal on Internet of Things, 2018, 2 (1): 35- 41. | |
3 |
LYU X C , NI W , TIAN H , et al. Optimal schedule of mobile edge computing for Internet of things using partial information[J]. IEEE Journal on Selected Areas in Communications, 2017, 35 (11): 2606- 2615.
doi: 10.1109/JSAC.2017.2760186 |
4 | 张海君, 张资政, 隆克平. 基于移动边缘计算的NOMA异构网络资源分配[J]. 通信学报, 2020, 41 (4): 27- 33. |
ZHANG H J , ZHANG Z Z , LONG K P . Resource allocation in NOMA heterogeneous network based on MEC[J]. Journal on Communications, 2020, 41 (4): 27- 33. | |
5 |
ZENG Y , ZHANG R , LIM T J , et al. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54 (5): 36- 42.
doi: 10.1109/MCOM.2016.7470933 |
6 |
HOSSEIN M , TALEB T , AROUK O , et al. Low-altitude unmanned aerial vehicles-based Internet of Things services: comprehensive survey and future perspectives[J]. IEEE Internet of Things Journal, 2016, 3 (6): 899- 922.
doi: 10.1109/JIOT.2016.2612119 |
7 | LUO C, NIGHTINGALE J, ASEMOTA E, et al. A UAV-cloud system for disaster sensing applications[C]//Proc. of the IEEE 81st Vehicular Technology Conference, 2015. |
8 |
WAN S , LU J X , FAN P Y , et al. To smart city: public safety network design for emergency[J]. IEEE Access, 2018, 6, 1451- 1460.
doi: 10.1109/ACCESS.2017.2779137 |
9 |
LUO Y Z , DING W R , ZHANG B C , et al. Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system[J]. IEEE Trans. on Cognitive Communications and Networking, 2021, 7 (3): 970- 984.
doi: 10.1109/TCCN.2021.3051947 |
10 | 吴启晖, 吴伟. 无人机辅助边缘计算的能量效率最大化算法设计[J]. 通信学报, 2020, 41 (10): 15- 24. |
WU Q H , WU W . Algorithm design on energy efficiency maximization for UAV-assisted edge computing[J]. Journal on Communi Cations, 2020, 41 (10): 15- 24. | |
11 |
张广驰, 陈娇, 崔苗, 等. 无人机交替中继通信及其轨迹优化和功率分配研究[J]. 电子与信息学报, 2021, 43 (12): 3554- 3562.
doi: 10.11999/JEIT200684 |
ZHANG G C , CHEN J , CUI M , et al. Trajectory optimization and power allocation for UAV alternate relay communications[J]. Journal of Electronics & Information Technology, 2021, 43 (12): 3554- 3562.
doi: 10.11999/JEIT200684 |
|
12 | COSTANZO F, LORENZO P D, BARBAROSSA S, et al. Dynamic resource optimization and altitude selection in UAV-based multi-access edge computing[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4985-4989. |
13 |
LU H D , HE X M , DU M , et al. Edge QoE: computation offloading with deep reinforcement learning for internet of things[J]. IEEE Internet of Things Journal, 2020, 7 (10): 9255- 9265.
doi: 10.1109/JIOT.2020.2981557 |
14 |
YANG L , YAO H P , WANG J L , et al. Multi-UAV-enabled load-balance mobile-edge computing for IoT networks[J]. IEEE Internet of Things Journal, 2020, 7 (8): 6898- 6908.
doi: 10.1109/JIOT.2020.2971645 |
15 |
LYU J B , ZENG Y , ZHANG R , et al. Placement optimization of UAV-mounted mobile base stations[J]. IEEE Communications Letters, 2017, 21 (3): 604- 607.
doi: 10.1109/LCOMM.2016.2633248 |
16 | MOZAFFARI M , SAAD W , BENNIS M , et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20 (8): 3984- 3997. |
17 |
WANG Y , RU Z Y , WANG K Z , et al. Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing[J]. IEEE Trans. on Cybernetics, 2020, 50 (9): 3984- 3997.
doi: 10.1109/TCYB.2019.2935466 |
18 |
LUO Y Z , DING W R , ZHANG B C , et al. Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system[J]. IEEE Trans. on Cognitive Communications and Networking, 2021, 7 (3): 970- 984.
doi: 10.1109/TCCN.2021.3051947 |
19 |
YANG Z H , PAN C H , WANG K Z , et al. Energy efficient resource allocation in UAV-enabled mobile edge computing networks[J]. IEEE Trans. on Wireless Communications, 2019, 18 (9): 4576- 4589.
doi: 10.1109/TWC.2019.2927313 |
20 | HUANG W F, GUO H Z, LIU J J, et al. Task offloading in UAV swarm-based edge computing: grouping and role division[C]//Proc. of the IEEE Global Communications Conference, 2021. |
21 |
DIAO X B , WANG M , ZHENG J C , et al. Fairness-aware offloading and trajectory optimization for multi-UAV enabled multi-access edge computing[J]. IEEE Access, 2020, 8, 124359- 124370.
doi: 10.1109/ACCESS.2020.3006112 |
22 |
YU Z , GONG Y L . Joint differential evolution and successive convex approximation in UAV-enabled mobile edge computing[J]. IEEE Access, 2022, 10, 57413- 57426.
doi: 10.1109/ACCESS.2022.3176362 |
23 | 嵇介曲, 朱琨, 易畅言, 等. 多无人机辅助移动边缘计算中的任务卸载和轨迹优化[J]. 物联网学报, 2021, 5 (1): 27- 35. |
JI J Q , ZHU K , YI C Y , et al. Joint task offloading and trajectory optimization for multi-UAV assisted mobile edge computing[J]. Chinese Journal on Internet of Things, 2021, 5 (1): 27- 35. | |
24 |
ZHANG Q X , CHEN J G , JI L , et al. Response delay optimization in mobile edge computing enabled UAV swarm[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (3): 3280- 3295.
doi: 10.1109/TVT.2020.2964821 |
25 |
WANG J J , JIANG C X , HAN Z , et al. Taking drones to the next level: cooperative distributed unmanned aerial-vehicular networks for small and mini-drones[J]. IEEE Vehicular Technology Magazine, 2017, 12 (3): 73- 82.
doi: 10.1109/MVT.2016.2645481 |
26 | ZHU S C , GUI L , CHENG N , et al. UAV-enabled computation migration for complex missions: a reinforcement learning approach[J]. IET Communications, 2020, 14 (5): 2472- 2480. |
27 |
LIU B C , ZHANG W K , CHEN W H , et al. Online computation offloading and traffic routing for uav swarms in edge-cloud computing[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (8): 8777- 8791.
doi: 10.1109/TVT.2020.2994541 |
28 |
WU W , ZHOU F H , WANG B Y , et al. Unmanned aerial vehicle swarm-enabled edge computing: potentials, promising technologies, and challenges[J]. IEEE Wireless Communications, 2022, 29 (4): 78- 85.
doi: 10.1109/MWC.103.2100286 |
29 | CHEN J G, ZHANG Q X, FENG Z Y. Timeliness analysis of service-driven collaborative mobile edge computing in UAV swarm[C]//Proc. of the IEEE Globecom Workshops, 2019. |
30 |
FARACI G , GRASSO C , SCHEMBRA G . Design of a 5G network slice extension with MEC UAVs managed with reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (10): 2356- 2371.
doi: 10.1109/JSAC.2020.3000416 |
31 |
YUAN W , NAHRSTEDT K . Energy-efficient soft real-time CPU scheduling for mobile multimedia systems[J]. ACM Trans. on Computer Systems, 2006, 24 (3): 292- 331.
doi: 10.1145/1151690.1151693 |
32 |
YU Z , GONG Y M , GUO S M . Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7 (4): 3147- 3159.
doi: 10.1109/JIOT.2020.2965898 |
33 | SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proc. of the IEEE International Conference on Evolutionary Computation Proceedings, 1998: 69-73. |
34 |
KATWE M , SINGH K , SHARMA P , et al. Energy efficiency maximization for UAV-assisted full-Duplex NOMA system: user clustering and resource allocation[J]. IEEE Trans. on Green Communications and Networking, 2022, 6 (2): 992- 1008.
doi: 10.1109/TGCN.2021.3134642 |
[1] | 张玉婷, 杨镜宇. 基于能力的国防资源分配方法[J]. 系统工程与电子技术, 2024, 46(2): 599-604. |
[2] | 陆德江, 王星, 陈游, 胡星. 联合多种资源协同干扰组网雷达系统的自适应调度方法[J]. 系统工程与电子技术, 2023, 45(9): 2744-2754. |
[3] | 张冰雪, 李希胜, 尤佳, 宋委任. 基于节点复合特性的端-边协同网络生成算法[J]. 系统工程与电子技术, 2023, 45(8): 2588-2596. |
[4] | 纪慧颖, 潘明海, 张元时, 喻庆豪. 基于遗传-蚁群融合算法的干扰资源分配方法[J]. 系统工程与电子技术, 2023, 45(7): 2098-2107. |
[5] | 许耀华, 王慧平, 王贵竹, 朱成龙, 丁梦琴, 蒋芳, 王翊. 基于图着色和三维匹配的车联网资源分配算法[J]. 系统工程与电子技术, 2023, 45(3): 869-875. |
[6] | 陈韩, 张晶, 董俊, 董洁. 子任务调度和时延联合优化的MEC卸载方案[J]. 系统工程与电子技术, 2023, 45(2): 572-579. |
[7] | 董博志, 朱江, 张海波. 放大转发中继系统中基于SCMA的能效资源分配方案[J]. 系统工程与电子技术, 2022, 44(6): 2035-2042. |
[8] | 邹虹, 白陈阳, 何鹏, 崔亚平, 王汝言, 吴大鹏. 基于分布式深度学习的边缘服务放置策略[J]. 系统工程与电子技术, 2022, 44(5): 1728-1737. |
[9] | 张源原, 高阳, 朱鹏, 刘锦涛, 谷树山. 基于着色Petri网的无人机侦察战术规划[J]. 系统工程与电子技术, 2022, 44(3): 900-907. |
[10] | 陈善学, 吴生金, 谷博文. 基于时间反演的上行NOMA系统能效优化算法[J]. 系统工程与电子技术, 2022, 44(3): 1007-1013. |
[11] | 余雪勇, 朱烨, 邱礼翔, 朱洪波. 基于无人机辅助边缘计算系统的节能卸载策略[J]. 系统工程与电子技术, 2022, 44(3): 1022-1029. |
[12] | 金志刚, 段晨旭, 羊秋玲, 苏毅珊. 基于水下云边协同架构的珊瑚礁监测新机制[J]. 系统工程与电子技术, 2022, 44(12): 3829-3836. |
[13] | 张育芝, 孙彦景, 王斌, 刘洋. 基于反馈信道状态信息的水声自适应OFDMA[J]. 系统工程与电子技术, 2021, 43(8): 2321-2331. |
[14] | 闫珍珍, 李波, 杨懋, 闫中江. 基于遗传算法的混叠式非正交多址接入方法[J]. 系统工程与电子技术, 2021, 43(3): 832-838. |
[15] | 陈发堂, 张志豪, 李贺宾, 梅志强. 802.11ax系统中基于OFDMA调度接入的公平性资源分配算法[J]. 系统工程与电子技术, 2021, 43(11): 3352-3359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||