1 |
ZULUAGA G J , VESELY K , BLATT A , et al. Automatic call sign detection: matching air surveillance data with air traffic spoken communications[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2020, 59 (1): 14.
|
2 |
HELMKE H, KLEINERT M, OHNEISER O, et al. Machine learning of air traffic controller command extraction models for speech recognition applications[C]//Proc. of the AIAA/IEEE 39th Digital Avionics Systems Conference, 2020.
|
3 |
ZULUAGA G J, SARFGOO S S, PRASAD A, et al. BERTraffic: a robust BERT-based approach for speaker change detection and role identification of air-traffic communications[EB/OL]. [2022-11-05]. https:doi.org/10.48550/arxiv.2110.05781.
|
4 |
GUIMIN J I A , JUNXIAN L I . A novel strategy for fine-grained semantic verification of civil aviation radiotelephony read-backs[J]. Chinese Journal of Aeronautics, 2022, 35 (12): 266- 277.
doi: 10.1016/j.cja.2022.05.005
|
5 |
HELMKE H, SLOTTY M, POIGER M, et al. Ontology for transcription of ATC speech commands of SESAR 2020 solution PJ. 16-04[C]//Proc. of the IEEE/AIAA 37th Digital Avionics Systems Conference, 2018.
|
6 |
LI J , SUN A X , HAN J L , et al. A survey on deep learning for named entity recognition[J]. IEEE Trans. on Knowledge and Data Engineering, 2022, 34 (1): 50- 70.
doi: 10.1109/TKDE.2020.2981314
|
7 |
SUTSKEVER I, MARTENS J, HINTON G E. Generating text with recurrent neural networks[C]//Proc. of the 28th International Conference on Machine Learning, 2011: 1017-1024.
|
8 |
BENGIO S, VINYALS O, JAITLY N, et al. Scheduled sampling for sequence prediction with recurrent neural networks[EB/OL]. [2015-09-23]. https://arxiv.org/abs/1506.03099.
|
9 |
KOO S. Automatic colorization with deep convolutional generative adversarial networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 212-217.
|
10 |
ZHANG Y Z, GAN Z, FAN K, et al. Adversarial feature matching for text generation[C]//Proc. of the International Conference on Machine Learning, 2017, 70: 4006-4015.
|
11 |
YU L T, ZHANG W N, WANG J, et al. Seqgan: sequence generative adversarial nets with policy gradient[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2017: 2852-2858.
|
12 |
CHE T, LI Y R, ZHANG R X, et al. Maximum-likelihood augmented discrete generative adversarial networks[EB/OL]. [2022-11-30]. https:dio.org/10.48550/arxiv.1702.07983.
|
13 |
LI J W, MONROE W, SHI T L, et al. Adversarial learning for neural dialogue generation[C]//Proc. of Conference on Empirical Methods in Natural Language Processing, 2017: 2157-2169.
|
14 |
GUO J X, LU S D, CAI H, et al. Long text generation via adversarial training with leaked information[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2018.
|
15 |
KIM S , YOON B . Multi-document summarization for patent documents based on generative adversarial network[J]. Expert Systems with Applications, 2022, 207, 117983.
doi: 10.1016/j.eswa.2022.117983
|
16 |
SHAHRIAR S . GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network[J]. Displays, 2022, 73, 102237.
doi: 10.1016/j.displa.2022.102237
|
17 |
邱意, 赵子豪, 李丹, 等. 基于GAN的民航陆空通话文本生成方法[J]. 计算机科学与应用, 2018, 8 (12): 1870- 1877.
|
|
QIU Y , ZHAO Z H , LI D , et al. Text generation in civil aviation radiotelephony communication using generative adversarial network[J]. Computer Science and Application, 2018, 8 (12): 1870- 1877.
|
18 |
WIMALASURIYA D C , DOU D . Ontology-based information extraction: an introduction and a survey of current approaches[J]. Journal of Information Science, 2010, 36 (3): 306- 323.
doi: 10.1177/0165551509360123
|
19 |
CHANG J , HAN X T . Multi-level context features extraction for named entity recognition[J]. Computer Speech & Language, 2023, 77, 101412.
|
20 |
邓学鸣. 基于Python正则表达式的管制指令匹配与提取[J]. 数字通信世界, 2019, (5): 13- 14.
|
|
DENG X M . Control command matching and extraction based on Python regular expressions[J]. Digital Communication World, 2019, (5): 13- 14.
|
21 |
杨昱昕. 基于自然语义提取的空中交通辅助决策方法研究[D]. 南京: 南京航空航天大学, 2018.
|
|
YANG Y X. Research on air traffic decision-making method based on extraction of natural semanteme[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
22 |
王煊, 盛寅, 丁辉, 等. 一种基于自然语言处理的结构化管制指令提取方法[P]. 中国: CN109460547A, 2019.03.12.
|
|
WANG X, SHENG Y, DING H, et al. A structured control instruction extraction method based on natural language processing[P]. China: CN109460547A, 2019.03.12.
|
23 |
LIU K J , GOHARY N E . Ontology-based semi-supervised conditional random fields for automated information extraction from bridge inspection reports[J]. Automation in Construction, 2017, 81, 313- 327.
doi: 10.1016/j.autcon.2017.02.003
|
24 |
CHENG J R , LIU J X , XU X B , et al. A review of chinese named entity recognition[J]. KSII Trans. on Internet & Information Systems, 2021, 15 (6): 2012- 2031.
|
25 |
LIU C , YANG S W . Using text mining to establish knowledge graph from accident/incident reports in risk assessment[J]. Expert Systems with Applications, 2022, 207 (11): 117991.
|
26 |
LUO R Q , SUN L A , XIA Y C , et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining[J]. Briefings in Bioinformatics, 2022, 23 (6): 409.
doi: 10.1093/bib/bbac409
|
27 |
LIN Y , TAN X L , YANG B , et al. Real-time controlling dynamics sensing in air traffic system[J]. Sensors, 2019, 19 (3): 679.
doi: 10.3390/s19030679
|
28 |
LIN Y , DENG L J , CHEN Z M , et al. A real-time ATC safety monitoring framework using a deep learning approach[J]. IEEE Trans. on Intelligent Transportation Systems, 2019, 21 (11): 4572- 4581.
|
29 |
张兴明. 基于深度学习的地空通信文本命名实体识别研究[J]. 现代计算机, 2021, (2): 28- 33.
|
|
ZHANG X M . A study of named entity recognition for radiotelephony communication text based on deep learning[J]. Modern Computer, 2021, (2): 28- 33.
|
30 |
KOCOUR M , VESELY K , SZOKE I , et al. Automatic processing pipeline for collecting and annotating air-traffic voice communication data[J]. Engineering Proceedings, 2021, 13 (1): 8- 18.
|
31 |
段立, 封皓君, 张碧莹, 等. 融合语义路径与语言模型的元学习知识推理框架[J]. 电子与信息学报, 2022, 44 (12): 4376- 4383.
|
|
DUAN L , FENG H J , ZHANG B Y , et al. A meta-learning knowledge reasoning framework combining semantic path and language model[J]. Journal of Electronics & Information Technology, 2022, 44 (12): 4376- 4383.
|
32 |
刘磊. 基于生成式对抗网络与异质集成学习的文本情感分类研究[D]. 南京: 南京邮电大学, 2020.
|
|
LIU L. Research on text sentiment classfication based on gene-rative adversarial network and heterogenous ensemble learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
|
33 |
HU X , CHU L Y , PEI J , et al. Model complexity of deep learning: a survey[J]. Knowledge and Information Systems, 2021, 63 (2): 2585- 2619.
|