1 |
吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6 (5): 405- 416.
|
|
WU W R , LIU J Z , TANG Y H , et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6 (5): 405- 416.
|
2 |
STAUDINGER E, SHUTIN D, MANSS C, et al. Swarm technologies for future space exploration missions[C]//Proc. of the 14th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2018.
|
3 |
于登云, 张哲, 泮斌峰, 等. 深空探测人工智能技术研究与展望[J]. 深空探测学报, 2020, 7 (1): 11- 23.
|
|
YU D Y , ZHANG Z , PAN B F , et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7 (1): 11- 23.
|
4 |
叶培建, 孟林智, 马继楠, 等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6 (4): 303- 316.
|
|
YE P J , MENG L Z , MA J N , et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6 (4): 303- 316.
|
5 |
HWU S U, UPANAVAGE M, SHAM C C. NASA lunar base wireless system propagation analysis[C]//Proc. of the Symposium for Space Applications of Wireless, 2007.
|
6 |
HWU S, UPANAVAGE M, SHAM C. Lunar surface propagation modeling and effects on communications[C]//Proc. of the 26th International Communications Satellite Systems Conference, 2008: 10-12.
|
7 |
HUANG P, ZHU Q M, XUE C W, et al. Path loss prediction over lunar surface with obstacle diffraction[C]//Proc. of the IEEE Workshop on Advanced Research and Technology in Industry Applications, 2014: 1276-1279.
|
8 |
曹素芝, 李昌浩, 王厚鹏, 等. 月面灵巧探测网络系统设计探讨[J]. 载人航天, 2021, 27 (1): 86- 92.
|
|
CAO S Z , LI C H , WANG H P , et al. Discussion on design of lunar dexterity detection network system[J]. Manned Spaceflight, 2021, 27 (1): 86- 92.
|
9 |
LIU S R, SHEN Z, MENG W. Cluster-based wireless sensor network deployment for lunar exploration[C]//Proc. of the International Conference on Communication Software and Networks, 2020: 138-143.
|
10 |
PAET L B, SANTRA S, LAINE M, et al. Maintaining connecti-vity in multi-rover networks for lunar exploration missions[C]//Proc. of the IEEE 17th International Conference on Automation Science and Engineering, 2021: 1539-1546.
|
11 |
SPEARMAN W, MARTIN J, GAO J L. Adaptive QoS in 802.11e wireless networks for lunar communications[C]//Proc. of the IEEE Aerospace Conference, 2008.
|
12 |
裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65 (24): 2577- 2586.
|
|
PEI Z Y , LIU J Z , WANG Q , et al. Overview of lunar exploration and International Lunar Research Station[J]. Chinese Science Bulletin, 2020, 65 (24): 2577- 2586.
|
13 |
LIN B , HOU P H , XIE L L , et al. Optimal relay station placement in broadband wireless access networks[J]. IEEE Trans. on Mobile Computing, 2010, 9 (2): 259- 269.
doi: 10.1109/TMC.2009.114
|
14 |
GUO W S , O'FARRELLT , et al. Relay deployment in cellular networks: planning and optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31 (8): 1597- 1606.
doi: 10.1109/JSAC.2013.130821
|
15 |
ZHANG X F , LIU Y J , WANG Y , et al. Performance analysis and optimization for non-uniformly deployed mmWave cellular network[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019, 49.
doi: 10.1186/s13638-019-1370-z
|
16 |
BHASIN K, WARNER J, ANDERSON L. Lunar communication terminals for NASA exploration missions: needs, operations concepts and architectures[C]//Proc. of the International Communications Satellite Systems Conference, 2008.
|
17 |
TRASE K, COULTER R, CHANEY R, et al. Science hybrid orbiter and lunar relay (SCHOLR) architecture and design[C]//Proc. of the AIAA SPACE Conference & Exposition, 2010.
|
18 |
MARKS G W, REILLY M T, HUFF R L. The lightweight deployable antenna for the MARSIS experiment on the Mars express spacecraft[C]//Proc. of the 36th Aerospace Mechanisms Symposium, 2002: 14-17.
|
19 |
Recommendation ITU-R P. 526-15 Propagation by diffraction[S]. Geneva: International Telecommunication Union, 2019.
|
20 |
PABARI J P , ACHARYA Y B , DESAI U B , et al. Radio frequency modeling for future wireless sensor network on surface of the moon[J]. International Journal on Communication, Network and System Sciences, 2010, 3 (4): 395- 401.
doi: 10.4236/ijcns.2010.34050
|
21 |
SANTRA S, PAET L B, STAUDINGER E, et al. Radio propagation modelling for coordination of lunar micro-rovers[C]//Proc. of the International Symposium on Artificial Intelligence, Robo-tics and Automation in Space, Virtual, 2020.
|
22 |
LU F, YAMAGUCHI A, TAKEUCHI K, et al. Experimental investigation of the reflection characteristics of a flat lunar surface[C]//Proc. of the IEEE International Conference on Wireless for Space and Extreme Environments, 2022: 23-28.
|
23 |
LORDOS G, AMY C, BROWDER B, et al. Autonomously deployable tower infrastructure for exploration and communication in lunar permanently shadowed regions[C]//Proc. of the Accelerate Space Commerce, Exploration and New Discovery, 2020.
|
24 |
BLETSAS A , SHIN H , WIN M Z . Cooperative communications with outage-optimal opportunistic relaying[J]. IEEE Trans. on Wireless Communications, 2007, 6 (9): 3450- 3460.
doi: 10.1109/TWC.2007.06020050
|
25 |
孙鹏, 武君胜, 廖梦琛, 等. 基于自适应遗传算法的战场资源动态调度模型及算法[J]. 系统工程与电子技术, 2018, 40 (11): 2459- 2465.
doi: 10.3969/j.issn.1001-506X.2018.11.11
|
|
SUN P , WU J S , LIAO M C , et al. Battlefield resource dynamic scheduling model and algorithm based on improved self-adaptive genetic algorithm[J]. Systems Engineering and Electronics, 2018, 40 (11): 2459- 2465.
doi: 10.3969/j.issn.1001-506X.2018.11.11
|
26 |
SAHEB H H , HAMZA J B , AL-BAGHDADI F A . New approach based on direction and genetic algorithm to predict target base station in mobile WiMAX[J]. Materials Today: Proceedings, 2022, 60, 1213- 1218.
doi: 10.1016/j.matpr.2021.08.071
|
27 |
MEETEI K T . A survey: swarm intelligence vs. genetic algorithm[J]. International Journal of Science and Research, 2014, 3, 231- 235.
|
28 |
LAINE M, YOSHIDA K. Multi-rover exploration strategies: coverage path planning with myopic sensing[C]//Proc. of the 12th International Conference on Field and Service Robotics, 2021: 205-218.
|
29 |
CCSDS. 211.0-B-4. Proximity-1 space link protocol-coding and synchronization sublayer[S]. Washington D. C. : Consultative Committee for Space Data Sgstems, 2006.
|
30 |
GHOSH A , RATASUK R . Essentials of LTE and LTE-A[M]. Cambrideg: Cambridge University Press, 2011.
|
31 |
MAGRIN D , AVALLONE S , ROY S , et al. Performance evaluation of 802.11 ax OFDMA through theoretical analysis and simulations[J]. IEEE Trans. on Wireless Communications, 2023, 22 (8): 5070- 5083.
doi: 10.1109/TWC.2022.3231447
|
32 |
IEEE Std 802.11aj-2018 part 11. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: enhancements for very high throughput to support Chinese millimeter wave frequency bands (60 GHz and 45 GHz)[S]. New York: IEEE, 2018.
|