系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 703-714.doi: 10.12305/j.issn.1001-506X.2024.02.34
• 制导、导航与控制 • 上一篇
刘正洋1, 周丽1,2,*, 张瑞1
收稿日期:
2023-01-16
出版日期:
2024-01-25
发布日期:
2024-02-06
通讯作者:
周丽
作者简介:
刘正洋 (1996—), 男, 硕士研究生, 主要研究方向为飞行器控制、预测控制基金资助:
Zhengyang LIU1, Li ZHOU1,2,*, Rui ZHANG1
Received:
2023-01-16
Online:
2024-01-25
Published:
2024-02-06
Contact:
Li ZHOU
摘要:
针对高超声速飞行器随机参数摄动的姿态控制问题, 提出一种基于轨迹线性化和扩展卡尔曼滤波(extended Kalman filter, EKF)的预测滑模控制方法。首先, 针对随机参数摄动的高超声速飞行器非线性模型, 采用轨迹线性化方法建立线性时变误差调节模型。通过分析参数误差的统计特性, 将统计信息以参数协方差矩阵的形式进行表示, 并设计EKF对受扰误差状态进行滤波。然后, 采用预测滑模控制方法设计误差稳定调节器, 使系统快速趋于稳定。所提方法对随机参数摄动和非线性干扰都具有强鲁棒性。仿真验证了所提方法的有效性。
中图分类号:
刘正洋, 周丽, 张瑞. 随机参数摄动下的高超声速飞行器姿态控制[J]. 系统工程与电子技术, 2024, 46(2): 703-714.
Zhengyang LIU, Li ZHOU, Rui ZHANG. Attitude control of hypersonic vehicle with random parameter perturbations[J]. Systems Engineering and Electronics, 2024, 46(2): 703-714.
表4
舵面偏转范围"
舵面/(°) | MPSMC | TLC | MPSMC-TLC |
δe | [-7.365, 8.484] | [-2.506, 1.522] | [-4.865, 2.117] |
δa | [-8.197, 7.214] | [-2.089, 2.931] | [-2.039, 3.462] |
δr | [-2.543, 2.576] | [-0.080, 0.420] | [-0.081, 0.034] |
δx | [-0.116, 0.126] | [-0.046, 0.020] | [-0.066, 0.014] |
δz | [-0.035, 0.037] | [-0.009, 0.004] | [-0.013, 0.003] |
δz | [-0.003, 0.002] | [-0.002, 0.002] | [-0.003, 0.002] |
1 |
DING Y B , YUE X K , CHEN G S , et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35 (7): 1- 18.
doi: 10.1016/j.cja.2021.10.037 |
2 |
WANG X , WEI Z , ZHANG R , et al. Autonomous reliable intelligent control design under condition monitoring mechanism: applied to hypersonic flight vehicles[J]. Control Engineering Practice, 2023, 137, 105577.
doi: 10.1016/j.conengprac.2023.105577 |
3 |
MA Q W , GUO J G , ZHOU J . A finite-time sliding mode control for hypersonic vehicle[J]. Transactions of the Institute of Measurement and Control, 2019, 41 (15): 4339- 4350.
doi: 10.1177/0142331219857301 |
4 | 董泽洪, 李颖晖, 吕茂隆, 等. 考虑输入受限的高超声速飞行器非奇异固定时间自适应切换控制[J]. 系统工程与电子技术, 2023, 45 (5): 1476- 1488. |
DONG Z H , LI Y H , LYU M L , et al. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints[J]. Systems Engineering and Electronics, 2023, 45 (5): 1476- 1488. | |
5 |
张康康, 周彬, 蔡光斌, 等. 高超声速飞行器指定时间时变高增益反馈跟踪控制[J]. 自动化学报, 2023,
doi: 10.16383/j.aas.c210895 |
ZHANG K K , ZHOU B , CAI G B , et al. Time-varying high gain feedback tracking control for hypersonic vehicle[J]. Automatica Sinica, 2023,
doi: 10.16383/j.aas.c210895 |
|
6 |
QIU B B , WANG G F , FAN Y S . Trajectory linearization-based robust course keeping control of unmanned surface vehicle with disturbances and input saturation[J]. ISA Transactions, 2021, 112, 168- 175.
doi: 10.1016/j.isatra.2020.12.013 |
7 |
QIU B B , WANG G F , FAN Y S . Predictor LOS-based trajectory linearization control for path following of underactuated unmanned surface vehicle with input saturation[J]. Ocean Engineering, 2020, 214, 107874.
doi: 10.1016/j.oceaneng.2020.107874 |
8 | YAO D Q, WEI Y Y, CUI N G. Research on integrated design of guidance and control for hypersonic vehicle based on trajectory linearization control method[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2019: 450-456. |
9 |
LASEMI N , SHAKER H R . Spacecraft attitude control: application of fine trajectory linearization control[J]. Advances in Space Research, 2021, 68 (9): 3663- 3676.
doi: 10.1016/j.asr.2021.08.018 |
10 | 刘凯, 郭健, 周文雅, 等. 吸气式组合动力高超声速飞行器上升段制导方法研究[J]. 宇航学报, 2020, 41 (8): 1023- 1031. |
LIU K , GUO J , ZHOU W Y , et al. Study on guidance method of ascending stage of air-breathing combined power hypersonic vehicle[J]. Journal of Astronautics, 2020, 41 (8): 1023- 1031. | |
11 |
HOSSEINPOUR J , SADATI S H , ABBASI Y . Enhanced composite nonlinear extended state observer based on trajectory linearization control in presence of external and internal distur-bance[J]. Aerospace Systems, 2023, 6 (2): 353- 364.
doi: 10.1007/s42401-023-00198-6 |
12 | GUO P , XU K , DENG H C , et al. Modeling and control of a hexacopter with a passive manipulator for aerial manipulation[J]. Complex & Intelligent Systems, 2021, 7 (6): 3051- 3065. |
13 | GALVÁ G R , VELÁZQUEZ V J E , FRIDMAN L , et al. Robust output trajectory linearization control for a class of linear time-varying systems[J]. IET Control Theory & Applications, 2021, 15 (6): 877- 889. |
14 |
SHEKOOFEH F J , FARUD S , MARZIEH K , et al. Tractable robust model predictive control with adaptive sliding mode for uncertain nonlinear systems[J]. International Journal of Systems Science, 2020, 51 (12): 2204- 2216.
doi: 10.1080/00207721.2020.1793230 |
15 |
MOUSAVI A , MARKAZI A H D . A predictive approach to adaptive fuzzy sliding-mode control of under-actuated nonlinear systems with input saturation[J]. International Journal of Systems Science, 2021, 52 (8): 1599- 1617.
doi: 10.1080/00207721.2020.1867775 |
16 | SEYED S T A , NAJMEH E . Feedback-based cooperative ramp metering for highway traffic flow control: a model predictive sliding mode control approach[J]. Journal of Robotics & Machine Learning, 2020, 30 (18): 8259- 8277. |
17 |
XIAO H L , ZHAO D Y , GAO A L , et al. Sliding mode predictive control: a survey[J]. Annual Reviews in Control, 2022, 54, 148- 166.
doi: 10.1016/j.arcontrol.2022.07.003 |
18 |
HUANG C , NAGHDY F , DU H P . Sliding mode predictive tracking control for uncertain steer-by-wire system[J]. Control Engineering Practice, 2019, 85, 194- 205.
doi: 10.1016/j.conengprac.2018.12.010 |
19 |
ZHANG Y W , ZHENG H , XU J , et al. Radial basis function model-based adaptive model predictive control for trajectory tracking of a clapping-wing micro air vehicle[J]. Aerospace, 2023, 10 (3): 253- 273.
doi: 10.3390/aerospace10030253 |
20 | 张远, 黄旭, 路坤锋, 等. 高超声速飞行器控制技术研究进展与展望[J]. 宇航学报, 2022, 43 (7): 866- 879. |
ZHANG Y , HUANG X , LU K F , et al. Research progress and prospect of hypersonic vehicle control technology[J]. Journal of Astronautics, 2022, 43 (7): 866- 879. | |
21 |
YOUSSEF M , AYMAN E B . Sliding mode control of directly excited structural dynamic model of twin-tailed fighter aircraft[J]. Journal of the Franklin Institute, 2021, 358 (18): 9721- 9740.
doi: 10.1016/j.jfranklin.2021.10.017 |
22 | 闫晓辉. 随机干扰下的近空间飞行器鲁棒控制[D]. 南京: 南京航空航天大学, 2020. |
YAN X H. Robust control of near-space vehicle under random interference[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. | |
23 |
LIU Y B , TONG Y H , JIN F T . Control law design of hypersonic vehicles using the elastic surrogate model[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39 (1): 216- 229.
doi: 10.1177/1461348419835131 |
24 |
LIU L T , TIAN B W . Comprehensive engineering frequency domain analysis and vibration suppression of flexible aircraft based on active disturbance rejection controller[J]. Sensors, 2022, 22 (16): 6207- 6226.
doi: 10.3390/s22166207 |
25 |
ZHOU Z , WANG Z A , GONG Z , et al. Design of thrust vectoring vertical/short takeoff and landing aircraft stability augmentation controller based on L1 adaptive control law[J]. Symmetry, 2022, 14 (9): 1837- 1851.
doi: 10.3390/sym14091837 |
26 | FELIX B , HARALD P . Finite horizon analysis of autolanded aircraft in final approach under crosswind[J]. Control Engineering Practice, 2022, 122, 105105. |
27 | 曹瑞, 刘燕斌, 陆宇平. 基于马尔可夫蒙特卡罗法的系统辨识方法研究及应用[J]. 宇航学报, 2022, 43 (4): 423- 433. |
CAO R , LIU Y B , LU Y P . Research and application of system identification method based on Markov chain Monte Carlo method[J]. Journal of Astronautics, 2022, 43 (4): 423- 433. | |
28 |
TATSUYA T , SHINTARO N , HISASHI D . Clustering method for Monte Carlo model predictive control[J]. IFAC Papers OnLine, 2021, 54 (14): 251- 256.
doi: 10.1016/j.ifacol.2021.10.361 |
29 | BETHGE J, YU S Y, FINDEISEN R. Model predictive control with guarantees for discrete linear stochastic systems subject to additive disturbances with chance constraints[C]//Proc. of the IEEE American Control Conference, 2020: 1943-1948. |
30 | 孙经广, 宋申民, 陈海涛, 等. 高超声速飞行器有限时间饱和跟踪控制[J]. 控制理论与应用, 2017, 34 (10): 1349- 1360. |
SUN J G , SONG S M , CHEN H T , et al. Finite time saturation tracking control for hypersonic vehicle[J]. Control Theory and Applications, 2017, 34 (10): 1349- 1360. |
[1] | 陈炳龙, 王磊, 刘帮, 周衡. 基于太阳导行镜测量的高精度姿态确定算法[J]. 系统工程与电子技术, 2024, 46(1): 245-253. |
[2] | 左仁伟, 李颖晖, 吕茂隆, 聂鸿雁. 动态自触发通信下多智能体输出反馈包容控制[J]. 系统工程与电子技术, 2024, 46(1): 345-356. |
[3] | 董泽洪, 李颖晖, 吕茂隆, 李哲, 裴彬彬. 考虑输入受限的高超声速飞行器非奇异固定时间自适应切换控制[J]. 系统工程与电子技术, 2023, 45(5): 1476-1488. |
[4] | 崔正达, 魏明英, 李运迁. 考虑阻力系数时变的下压段半解析时间预测方法[J]. 系统工程与电子技术, 2023, 45(2): 530-537. |
[5] | 王冠, 茹海忠, 张大力, 马广程, 夏红伟. 弹性高超声速飞行器智能控制系统设计[J]. 系统工程与电子技术, 2022, 44(7): 2276-2285. |
[6] | 董一平, 刘宁, 苏中, 王靖骁, 白宏阳. 基于AEKF的高速自旋飞行体组合导航方法[J]. 系统工程与电子技术, 2022, 44(6): 1977-1983. |
[7] | 李文华, 汪立新, 沈强, 李灿, 吴宗收. 基于鲁棒EKF的MEMS-INS/GNSS/VO组合导航方法[J]. 系统工程与电子技术, 2022, 44(6): 1994-2000. |
[8] | 胥涯杰, 鲜勇, 李邦杰, 任乐亮, 李少朋, 郭玮林. 基于神经网络的高超声速飞行器惯导系统精度提高方法[J]. 系统工程与电子技术, 2022, 44(4): 1301-1309. |
[9] | 韦俊宝, 李海燕, 李静. 高超声速飞行器新型攻角约束反演控制[J]. 系统工程与电子技术, 2022, 44(4): 1310-1317. |
[10] | 安通, 王鹏, 王建华, 汤国建, 潘玉龙, 陈海山. 弹性高超声速飞行器动态面制导控制一体化设计方法[J]. 系统工程与电子技术, 2022, 44(3): 956-966. |
[11] | 王琪, 廖志忠, 燕飞. 基于概率数据关联的雷达导引头抗速度拖引干扰算法[J]. 系统工程与电子技术, 2022, 44(2): 448-454. |
[12] | 张君彪, 熊家军, 兰旭辉, 李凡, 刘文俭, 席秋实. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术, 2022, 44(2): 628-636. |
[13] | 刘艺, 周晓雄, 程广俊. 高动态跳频载波跟踪技术[J]. 系统工程与电子技术, 2022, 44(2): 677-683. |
[14] | 孙照强, 王志贵, 孟飞, 李陆雨, 于中, 陈燕. 基于EKF及弹道方程的弹道目标跟踪滤波器设计[J]. 系统工程与电子技术, 2022, 44(10): 3207-3212. |
[15] | 岳彩红, 唐胜景, 郭杰, 王肖, 张浩强. 高超声速伸缩式变形飞行器再入轨迹快速优化[J]. 系统工程与电子技术, 2021, 43(8): 2232-2243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||