系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 658-667.doi: 10.12305/j.issn.1001-506X.2024.02.29

• 制导、导航与控制 • 上一篇    

基于一致性理论和S-MPC的四旋翼编队协同避障

胡树欣, 张安, 孙嫚憶, 李铭浩   

  1. 西北工业大学航空学院, 陕西 西安 710072
  • 收稿日期:2022-12-14 出版日期:2024-01-25 发布日期:2024-02-06
  • 通讯作者: 胡树欣
  • 作者简介:胡树欣(1996—), 男, 硕士研究生, 主要研究方向为多智能体协同控制
    张安(1962—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为航空武器火力控制技术
    孙嫚憶(1994—), 女, 硕士研究生, 主要研究方向为无人机导航与控制
    李铭浩(1997—), 男, 博士研究生, 主要研究方向为多智能体协同控制
  • 基金资助:
    国家自然科学基金(62073267);国家自然科学基金(61903305)

Obstacles avoidance for quadrotor formation based on consensus theory and S-MPC

Shuxin HU, An ZHANG, Manyi SUN, Minghao LI   

  1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2022-12-14 Online:2024-01-25 Published:2024-02-06
  • Contact: Shuxin HU

摘要:

针对四旋翼无人机队形保持、编队避障问题, 在双向、时不变通信拓扑结构下, 基于领航跟随策略, 利用安全攸关模型预测控制(safety-critical model predictive control, S-MPC)和一致性理论, 设计编队控制器并实现了具有避障能力的队形保持。采用分散式S-MPC算法, 每架无人机在满足避碰条件无人机的可行区域内, 仅规划自身运动来跟踪编队控制算法指定的轨迹。研究了各解耦后的无人机如何与其他无人机并行求解带有耦合约束的优化问题, 从而保证了各无人机独立决策的一致性。同时, 所提算法将控制障碍函数(control barrier function, CBF)引入到MPC控制器的约束中, 从而保证无人机飞行在远离障碍物的安全集合内, 规划出的轨迹更为平滑, 减小了系统能耗。最后, 通过仿真实验验证了所提方法的有效性。

关键词: 模型预测控制, 控制障碍函数, 编队避障, 一致性算法

Abstract:

Aiming at the problem of quadrotors unmanned aerial vehicle (UAV) formation maintenance and obstacle avoidance, the safety-critical model predictive control (S-MPC) and consistency theory is proposed to design the formation controller to achieve formation maintenance with obstacle avoidance ability. By using the decentralized S-MPC algorithm, each UAV only plans its own motion to track the trajectory specified by the formation control algorithm within the feasible area that meets the collision avoidance conditions. This paper studies how each decoupled UAV solves the optimization problem with coupling constraints in parallel with other UAVs, so as to ensure the consistency of independent decision-making of each UAV. At the same time, the proposed algorithm introduces the control barrier function (CBF) into the constraints of the MPC controller, so as to ensure that the UAV flies in a safe set far away from obstacles, the planned trajectory is smoother, and the system is reduced energy consumption. Finally, the effectiveness of the proposed method is verified by simulation experiments.

Key words: model predictive control, control barrier function (CBF), formation obstacle avoidance, consensus algorithm

中图分类号: