系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 419-427.doi: 10.12305/j.issn.1001-506X.2024.02.06

• 电子技术 • 上一篇    

基于多帧聚类的紧凑型HFSWR虚假点迹识别方法

孙伟峰, 赵林林, 纪永刚, 戴永寿   

  1. 中国石油大学(华东)海洋与空间信息学院, 山东 青岛 266580
  • 收稿日期:2022-12-02 出版日期:2024-01-25 发布日期:2024-02-06
  • 通讯作者: 孙伟峰
  • 作者简介:孙伟峰(1982—), 男, 教授, 博士, 主要研究方向为地波雷达目标探测技术
    赵林林(1998—), 男, 硕士研究生, 主要研究方向为紧凑型地波雷达目标探测与跟踪
    纪永刚(1977—), 男, 教授, 博士, 主要研究方向为紧凑型地波雷达目标探测、海上目标多手段融合探测、新体制超视距雷达海态监测
    戴永寿(1963—), 男, 教授, 博士, 主要研究方向为地震信号处理、海洋环境监测
  • 基金资助:
    国家自然科学基金(62071493);国家自然科学基金(61831010)

A false plot identification method based on multi-frame clustering for compact HFSWR

Weifeng SUN, Linlin ZHAO, Yonggang JI, Yongshou DAI   

  1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
  • Received:2022-12-02 Online:2024-01-25 Published:2024-02-06
  • Contact: Weifeng SUN

摘要:

紧凑型高频地波雷达发射功率低, 目标检测时信噪比低、虚警率高, 会产生大量虚假点迹, 影响后续目标跟踪性能。为了滤除虚假点迹, 利用目标的运动特性, 提出了一种多帧聚类与极限学习机分类两级级联的虚假点迹识别方法。首先, 利用基于最优邻域尺寸的多帧聚类方法, 将连续多帧中与待识别点迹属于同一潜在目标的点迹聚类成簇。然后, 计算簇内待识别点迹与其相邻帧内点迹的距离-多普勒速度的差分值, 以其为特征利用极限学习机辨识虚假点迹。实验结果表明, 所提方法能够准确将属于同一目标的点迹聚类, 虚假点迹识别率达到95%。

关键词: 紧凑型地波雷达, 虚假点迹识别, 多帧聚类, 极限学习机

Abstract:

Compact high-frequency surface wave radar (HFSWR) has low signal-to-noise ratio and high false alarm rate in target detection due to its low transmit power, a large number of false plots will be produced, which degrades the target tracking performance. In order to remove the false plots, a two-stage cascaded false plot identification method including multi-frame clustering module and extreme learning machine based classification module is proposed with target motion characteristics well explored. Firstly, the multi-frame plot clustering method based on optimal neighborhood size is utilized to cluster the potential plots belonging to the same target with the plot to be identified in consecutive multiple frames. Then, the differences in terms of range-Doppler velocity between the plot to be identified and plots in its neighbor frames are calculated as features, and the extreme learning machine is applied to these features to identify the false plots. Experimental results demonstrate that the proposed method can cluster the plots belonging to the same target accurately, and achieves a false plot identification rate of 95%.

Key words: compact high-frequency surface wave radar (HFSWR), false plot identification, multi-frame clustering, extreme learning machine

中图分类号: