1 |
LIU A R , LIU Y H , GU J J , et al. Blind image super-resolution: a survey and beyond[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 45 (5): 5461- 5480.
|
2 |
TIAN C W, ZHANG X Y, LIN J C W, et al. Generative adversarial networks for image super-resolution: a survey[EB/OL]. [2023-04-09]. https://arxiv.org/abs/2204.13620.
|
3 |
毕笃彦, 王世平, 刘坤, 等. 基于并行映射卷积网络的超分辨率重建算法[J]. 系统工程与电子技术, 2018, 40 (8): 1873- 1880.
|
|
BI D Y , WANG S P , LIU K , et al. Super-resolution algorithm based on parallel mapping convolution network[J]. Systems Engi- neering and Electronics, 2018, 40 (8): 1873- 1880.
|
4 |
TAO H J , LU X B . Contour-based smoky vehicle detection from surveillance video for alarm systems[J]. Signal, Image and Video Processing, 2019, 13 (2): 217- 225.
doi: 10.1007/s11760-018-1348-z
|
5 |
王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42 (1): 222- 233.
|
|
WANG G , ZHOU R F , ZOU Y K . Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42 (1): 222- 233.
|
6 |
陈书贞, 曹世鹏, 崔美玥, 等. 基于深度多级小波变换的图像盲去模糊算法[J]. 电子与信息学报, 2021, 43 (1): 154- 161.
|
|
CHEN S Z , CAO S P , CUI M Y , et al. Image blind deblurring algorithm based on deep multi-level wavelet transform[J]. Journal of Electronics &Information Technology, 2021, 43 (1): 154- 161.
|
7 |
CHEN H G , HE X H , QING L B , et al. Real-world single image super resolution: a brief review[J]. Information Fusion, 2022, 79, 124- 145.
doi: 10.1016/j.inffus.2021.09.005
|
8 |
BASHIR S M A , WANG Y , KHAN M , et al. A comprehensive review of deep learning based single image super-resolution[J]. PeerJ Computer Science, 2021, 7, e621.
|
9 |
ZHU X B , LI Z Z , LOU J G , et al. Video super-resolution based on a spatio-temporal matching network[J]. Pattern Re-cognition, 2021, 110 (2): 107619.
|
10 |
DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proc. of the 13th European Conference on Computer Vision,, 2014: 184-199.
|
11 |
DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Proc. of the 14th European Conference on Computer Vision, 2016: 391-407.
|
12 |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
|
13 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
|
14 |
AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proc. of the 15th European Conference on Computer Vision, 2018: 256-272.
|
15 |
TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2790-2798.
|
16 |
TAI Y, YANG J, LIU X M, et al. MemNet: a persistent memory network for image restoration[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 4549-4557.
|
17 |
程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26 (3): 605- 618.
|
|
CHENG D Q , GUO X , CHEN L L , et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics, 2021, 26 (3): 605- 618.
|
18 |
QIN J H , HUANG Y J , WEN W S . Multi-scale feature fusion residual network for single image super-resolution[J]. Neurocomputing, 2020, 379, 334- 342.
|
19 |
LI J C, FANG F M, MEI K F, et al. Multi-scale residual network for image super-resolution[C]//Proc. of the 15th European Conference on Computer Vision, 2018: 517-532.
|
20 |
MUQEET A , IQBAL M T B , BAE S H . Hybrid residual attention network for single image super resolution[J]. IEEE Access, 2019, 137020- 137029.
|
21 |
KEYS R . Cubic convolution interpolation for digital image processing[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1981, 29 (6): 1153- 1160.
|
22 |
KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1637-1645.
|
23 |
LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5838-5843.
|
24 |
HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 723-731.
|
25 |
ZHANG K, ZUO W M, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3262-3271.
|