系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 391-400.doi: 10.12305/j.issn.1001-506X.2024.02.03

• 电子技术 • 上一篇    

二阶逐层特征融合网络的图像超分辨重建

于蕾1, 邓秋月1, 郑丽颖2,*, 吴昊宇1   

  1. 1. 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
    2. 哈尔滨工程大学计算机科学与技术学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2022-11-12 出版日期:2024-01-25 发布日期:2024-02-06
  • 通讯作者: 郑丽颖
  • 作者简介:于蕾(1977—), 女, 副教授, 博士, 主要研究方向为图像/视频质量评估、图像/视频分析和深度学习
    邓秋月(1996—), 女, 硕士研究生, 主要研究方向为图像超分辨重建
    郑丽颖(1976—), 女, 教授, 博士, 主要研究方向为图像/视频分析、模式识别、机器学习
    吴昊宇(1997—), 男, 硕士研究生, 主要研究方向为图像超分辨重建
  • 基金资助:
    国家自然科学基金(61771155)

Second-order progressive feature fusion network for image super-resolution reconstruction

Lei YU1, Qiuyue DENG1, Liying ZHENG2,*, Haoyu WU1   

  1. 1. School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
    2. School of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
  • Received:2022-11-12 Online:2024-01-25 Published:2024-02-06
  • Contact: Liying ZHENG

摘要:

针对一些超分辨网络忽略了对网络各层次特征的复用以及融合的问题, 构建了具有较强特征复用和融合能力的二阶逐层特征融合超分辨网络, 以获得具有高分辨率、高保真度的重建图像。网络的核心是逐层特征融合模块, 该模块通过特征融合操作增强特征的重用。此外, 还提出了二阶特征融合机制, 该机制在网络的局部和全局层次上采用逐层特征融合方法进行特征融合。实验结果表明该网络的重建图像在线条和轮廓上更清晰, 并且在峰值信噪比和结构相似度上也取得了更好的结果。例如当缩放尺度因子为2时, 各测试集上的峰值信噪比/结构相似度依次为38.20 dB/0.961 2、33.81 dB/0.919 5、32.28 dB/0.901 0、32.65 dB/0.932 4、39.11 dB/0.977 9, 相比其他模型有一定提升, 从客观标准和主观角度证明了二阶逐层特征融合超分辨网络具有一定的优越性。

关键词: 超分辨重建, 卷积神经网络, 特征融合, 二阶特征融合机制

Abstract:

Some super-resolution networks ignore the reuse of the features of different levels, and there is no fusing of the features. In order to solve those problems, a second-order progressive feature fusion super-resolution network with strong feature reuse and fuse ability is constructed to realize the reconstructed image with high resolution and high fidelity. The core of the network is progressive feature fusion block. Progressive feature fusion block enhances the reuse of features through feature fusion operation. In addition, a second-order feature fusion mechanism is proposed, which adopts progressive feature fusion method for feature fusion at the local and global levels of the network. The experimental results show that the reconstructed image of the network is clearer than that of other networks on line and contour, and better results are obtained in peak signal to noise ratio (SNR) and structural similarity. For example, when the scaling factor is 2, the peak SNR/structure similarity on each test set is 38.20 dB/0.961 2, 33.81 dB/0.919 5, 32.28 dB/0.901 0, 32.65 dB/0.932 4, and 39.11 dB/0.977 9 respectively, which proves that the proposed model acheives improvent compared to other models. The advantages of the second-order progressive feature fusion super-resolution network is proven from the objective standard and subjective point of view.

Key words: super-resolution reconstruction, convolutional neural network (CNN), feature fusion, second-order feature fusion mechanism

中图分类号: