系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 381-390.doi: 10.12305/j.issn.1001-506X.2024.02.02
• 电子技术 • 上一篇
孙国敏1, 张伟1,2,*, 邵怀宗1, 方旖3, 李鹏飞2
收稿日期:
2023-03-28
出版日期:
2024-01-25
发布日期:
2024-02-06
通讯作者:
张伟
作者简介:
孙国敏(1989—), 女, 助理研究员, 博士, 主要研究方向为辐射源识别基金资助:
Guomin SUN1, Wei ZHANG1,2,*, Huaizong SHAO1, Yi FANG3, Pengfei LI2
Received:
2023-03-28
Online:
2024-01-25
Published:
2024-02-06
Contact:
Wei ZHANG
摘要:
全面、准确的电磁数据标注是电磁大数据智能分析的前提和基础。针对战场博弈强对抗条件下电磁感知数据存在的标注率低、标注信息错误冗余等问题, 提出基于张量完备理论的标注补全方案。理论上, 同一场景下的同一目标, 利用不同感知平台观测提取的特征参数(如雷达脉冲参数)是相似(低秩)的, 且在一段观测时间内的测量结果是分段连续光滑的。故跨平台接收的目标数据标注补全可以建模为基于低秩张量完备的特征复原模型, 并引入全变分正则来刻画一段时间内特征参数的分段连续光滑属性。由于模型非凸, 使用基于矩阵最大秩分解的非凸近似算法进行迭代求解。通过仿真数据以及雷达脉冲描述字实侦数据并对模型的性能进行测试。实验结果表明, 所提方法在目标特征标注信息严重缺失的情况下能够很好地实现标注补全, 同时具有一定的标注纠错功能。
中图分类号:
孙国敏, 张伟, 邵怀宗, 方旖, 李鹏飞. 基于低秩张量完备的电磁大数据标注补全算法[J]. 系统工程与电子技术, 2024, 46(2): 381-390.
Guomin SUN, Wei ZHANG, Huaizong SHAO, Yi FANG, Pengfei LI. A low-rank tensor completion based method for electromagnetic big data annotation recovery[J]. Systems Engineering and Electronics, 2024, 46(2): 381-390.
表2
二维仿真数据原始矩阵"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.614 87 | 0.621 79 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.611 59 |
3 | 0.580 36 | 0.66 73 | 0.608 51 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.612 46 | 0.658 91 | 0.576 56 |
5 | 0.599 11 | 0.577 54 | 0.572 07 | 0.613 90 | 0.618 08 |
6 | 0.614 58 | 0.612 74 | 0.609 07 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.602 26 | 0.604 20 | 0.615 27 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.607 95 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.600 10 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
表3
二维仿真数据观测矩阵(缺失率为30%)"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0 | 0 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0 |
3 | 0.580 36 | 0.667 30 | 0 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0 | 0.658 91 | 0.576 56 |
5 | 0 | 0.577 54 | 0.572 07 | 0.613 90 | 0 |
6 | 0.614 58 | 0 | 0 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0 | 0 | 0 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
表4
所提算法二维仿真数据矩阵部分补全结果(缺失比例为30%)"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.614 87 | 0.621 79 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.611 59 |
3 | 0.580 36 | 0.667 30 | 0.608 51 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.612 46 | 0.658 91 | 0.576 56 |
5 | 0.599 11 | 0.577 54 | 0.572 07 | 0.613 90 | 0.618 08 |
6 | 0.614 58 | 0.612 74 | 0.609 07 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.602 26 | 0.604 20 | 0.615 27 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.607 95 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.600 10 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
表5
所提算法三维仿真矩阵部分补全结果(缺失比例为30%)"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.594 83 | 0.617 11 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.611 59 |
3 | 0.580 36 | 0.667 30 | 0.620 17 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.609 59 | 0.658 91 | 0.576 56 |
5 | 0.592 87 | 0.577 54 | 0.572 07 | 0.613 90 | 0.604 18 |
6 | 0.614 58 | 0.607 41 | 0.602 28 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.599 34 | 0.611 75 | 0.605 28 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.620 13 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.621 17 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
表6
所提算法四维仿真数据矩阵部分补全结果(缺失比例为30%)"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.597 82 | 0.614 41 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.605 99 |
3 | 0.580 36 | 0.667 30 | 0.625 77 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.609 43 | 0.658 91 | 0.576 56 |
5 | 0.601 14 | 0.577 54 | 0.572 07 | 0.613 90 | 0.621 74 |
6 | 0.614 58 | 0.599 37 | 0.609 07 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.601 13 | 0.610 22 | 0.598 72 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.623 37 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.613 67 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
表9
二维实测数据原始矩阵"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.866 67 | 0.993 28 | 0 |
2 | 0.999 81 | 0.922 41 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.741 38 | 0.911 11 | 0.996 14 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.922 22 | 0.996 14 | 0.142 86 |
5 | 0.999 87 | 0.827 59 | 0.911 11 | 0.996 14 | 0.142 85 |
6 | 0.999 80 | 0.896 55 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.933 33 | 0.997 29 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.933 33 | 0.997 29 | 0.142 85 |
9 | 0.999 86 | 0.948 28 | 0.944 44 | 0.996 72 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.933 33 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.996 14 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.995 57 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.996 14 | 0.142 85 |
14 | 0.999 85 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.999 85 | 0.922 41 | 0.988 89 | 0.996 14 | 0.142 86 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.996 72 | 0.142 86 |
17 | 0.999 86 | 0.931 03 | 1 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.827 59 | 0.988 89 | 0.996 72 | 0.142 85 |
19 | 0.998 91 | 0.094 82 | 0.811 11 | 0.993 85 | 0.000 11 |
20 | 0.999 82 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
表10
二维实测数据观测矩阵(缺失率为30%)"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0 | 0.993 28 | 0 |
2 | 0.999 81 | 0 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0 | 0.911 11 | 0 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0 | 0.996 14 | 0 |
5 | 0 | 0.827 59 | 0 | 0.996 14 | 0 |
6 | 0 | 0 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0 | 0 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0 | 0 | 0 |
9 | 0.999 86 | 0.948 28 | 0 | 0 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0 | 0.142 85 |
14 | 0 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0 | 0 | 0 | 0.996 14 | 0 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0 | 0.142 86 |
17 | 0 | 0.931 03 | 0 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0 | 0 | 0.996 72 | 0 |
19 | 0 | 0 | 0.811 11 | 0.993 85 | 0 |
20 | 0 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
表11
所提算法二维实测数据部分补全结果(缺失比例为30%)"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.831 90 | 0.993 28 | 0 |
2 | 0.999 81 | 0.719 40 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.807 70 | 0.911 11 | 0.871 60 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.874 50 | 0.996 14 | 0.776 40 |
5 | 0.912 00 | 0.827 59 | 0.858 80 | 0.996 14 | 0.731 00 |
6 | 0.890 10 | 0.901 10 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.928 20 | 0.858 80 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.854 30 | 0.893 40 | 0.765 70 |
9 | 0.999 86 | 0.948 28 | 0.877 90 | 0.866 60 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.832 00 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.858 10 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.893 20 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.866 20 | 0.142 85 |
14 | 0.878 80 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.844 10 | 0.859 70 | 0.825 40 | 0.996 14 | 0.823 20 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.889 50 | 0.142 86 |
17 | 0.880 70 | 0.931 03 | 0.853 10 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.784 90 | 0.836 10 | 0.996 72 | 0.748 70 |
19 | 0.869 20 | 0.704 20 | 0.811 11 | 0.993 85 | 0.719 20 |
20 | 0.869 50 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
表12
所提算法三维实测数据部分补全结果(缺失比例为30%)"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.831 90 | 0.993 28 | 0 |
2 | 0.999 81 | 0.824 90 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.779 60 | 0.911 11 | 0.871 60 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.884 70 | 0.996 14 | 0.899 60 |
5 | 0.941 10 | 0.827 59 | 0.869 30 | 0.996 14 | 0.822 90 |
6 | 0.923 70 | 0.837 90 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.938 40 | 0.858 80 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.955 70 | 0.893 40 | 0.771 90 |
9 | 0.999 86 | 0.948 28 | 0.885 70 | 0.866 60 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.849 20 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.858 10 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.893 20 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.866 20 | 0.142 85 |
14 | 0.914 40 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.902 50 | 0.882 60 | 0.955 60 | 0.996 14 | 0.663 90 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.889 50 | 0.142 86 |
17 | 0.818 30 | 0.931 03 | 0.831 10 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.839 40 | 0.847 40 | 0.996 72 | 0.414 10 |
19 | 0.827 90 | 0.779 20 | 0.811 11 | 0.993 85 | 0.522 70 |
20 | 0.968 80 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
表13
所提算法四维实测数据部分补全结果(缺失比例为30%)"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.831 90 | 0.993 28 | 0 |
2 | 0.999 81 | 0.905 50 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.828 90 | 0.911 11 | 0.932 70 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.885 30 | 0.996 14 | 0.414 10 |
5 | 0.939 70 | 0.827 59 | 0.879 30 | 0.996 14 | 0.446 70 |
6 | 0.889 70 | 0.912 80 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.885 70 | 0.905 50 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.942 80 | 0.931 40 | 0.155 90 |
9 | 0.999 86 | 0.948 28 | 0.937 40 | 0.932 70 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.932 20 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.967 90 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.966 40 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.988 30 | 0.142 85 |
14 | 0.899 30 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.899 10 | 0.904 40 | 0.954 70 | 0.996 14 | 0.298 30 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.991 00 | 0.142 86 |
17 | 0.871 20 | 0.931 03 | 0.944 60 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.855 90 | 0.820 30 | 0.996 72 | 0.473 10 |
19 | 0.903 30 | 0.872 60 | 0.811 11 | 0.993 85 | 0.442 60 |
20 | 0.882 40 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
1 | 何友, 朱扬勇, 赵鹏, 等. 国防大数据概述[J]. 系统工程与电子技术, 2016, 38 (6): 1300- 1305. |
HE Y , ZHU Y Y , ZHAO P , et al. Panorama of national defense big data[J]. Systems Engineering and Electronics, 2016, 38 (6): 1300- 1305. | |
2 | LI A , ZANG Q , SUN D , et al. A text feature-based approach for literature mining of IncRNA-protein interactions[J]. Neurocomputing, 2016, (7): 1417- 1421. |
3 | ARLOTTA L, CRESCENZ V, MECCA G, et al. Automatic annotation of data extracted from large web sites[C]//Proc. of the 6th International Workshop on Web and Databases, 2003: 7-12. |
4 | 李明, 李秀兰. 基于结果模式的Deep Web数据标注方法[J]. 计算机应用, 2011, 31 (7): 1733- 1736. |
LI M , LI X L . Deep web data annotation method based on result schema[J]. Journal of Computer Application, 2011, 31 (7): 1733- 1736. | |
5 | CHEN Y D, XU H, CARAMANIS C, et al. Robust matrix completion and corrupted columns[C]//Proc. of the 28th International Conference on Machine Learning, 2011: 873-880. |
6 | NEGAHBAN S , WAIN M J . Restricted strong convexity and weighted matrix completion: optimal bounds with noise[J]. Journal of Machine Learning Research, 2012, 5 (13): 1665- 1697. |
7 |
DAI W , KERM E , MILENK O . A geometric approach to low-rank matrix completion[J]. IEEE Trans. on Information Theory, 2012, 58 (1): 237- 247.
doi: 10.1109/TIT.2011.2171521 |
8 | 白宏阳, 马军勇, 熊凯, 等. 图像修复中的加权矩阵补全模型设计[J]. 系统工程与电子技术, 2016, 38 (7): 1703- 1708. |
BAI H Y , MA J Y , XIONG K , et al. Design of weighted matrix completion model in image inpainting[J]. Systems Engineering and Electronics, 2016, 38 (7): 1703- 1708. | |
9 |
ZHUANG L S , ZHOU Z H , GAO S H , et al. Label information guided graph construction for semi-supervised learning[J]. IEEE Trans. on Image Processing, 2017, 26 (9): 4182- 4192.
doi: 10.1109/TIP.2017.2703120 |
10 |
LI B Z , ZHAO X L , ZHANG X J , et al. A learnable group-tube transform induced tensor nuclear norm and its application for tensor completion[J]. SIAM Journal on Imaging Sciences, 2023, 16 (3): 1370- 1397.
doi: 10.1137/22M1531907 |
11 | TANG X L, ZHAO X L, LIU J, et al. Uncertainty-aware unsupervised image deblurring with deep residual prior[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2023. |
12 | WANG J L, HUANG T Z, ZHAO X L, et al. CoNoT: coupled nonlinear transform based low-rank tensor representation for multi-dimensional visual data completion[EB/OL]. [2023-03-28]. DOI: 10.1109/tnnls.2022.3217198. |
13 | LI B Z , ZHAO X L , JI T Y , et al. Nonlinear transform based tensor nuclear norm for low-rank tensor completion[J]. Journal of Scientific Computing, 2023, 92, 83. |
14 |
LUO Y S , ZHAO X L , JIANG T X , et al. Self-supervised nonlinear transform-based tensor nuclear norm for multi-dimensional image recovery[J]. IEEE Trans. on Image Processing, 2022, 31, 3793- 3808.
doi: 10.1109/TIP.2022.3176220 |
15 | DING M , HUANG T Z , ZHAO X L , et al. Tensor completion via nonconvex tensor ring rank minimization with guaranteed convergence[J]. Signal Processing, 2022, 194, 194- 208. |
16 |
LI B Z , ZHAO X L , WANG J L , et al. Tensor completion via collaborative sparse and low-rank transforms[J]. IEEE Trans. on Computational Imaging, 2021, 7, 1289- 1303.
doi: 10.1109/TCI.2021.3126232 |
17 | ZHEN Y B, HUANG T Z, ZHAO X L, et al. Fully-connected tensor network decomposition and its application to higher-order tensor completion[C]//Proc. of the 35th AAAI Conference on Artificial Intelligence, 2021: 11071-11078. |
18 |
WEN H X , ZHAO X L , JIANG T X , et al. Deep plug-and-play prior for low-rank tensor completion[J]. Neurocomputing, 2020, 400, 137- 149.
doi: 10.1016/j.neucom.2020.03.018 |
19 | 赵洪山, 寿佩瑶, 马利波. 低压台区缺失数据的张量补全方法[J]. 中国电机工程学报, 2020, 40 (22): 7328- 7337. |
ZHAO H S , SHOU P Y , MA L B . A Tensor completion method of missing data in transformer district[J]. Proceedings of the CSEE, 2020, 40 (22): 7328- 7337. | |
20 |
LI X P , CHEUNG S H . Robust low-rank tensor completion based on tensor ring rank via ellnorm[J]. IEEE Trans. on Signal Processing, 2021, 69, 3685- 3698.
doi: 10.1109/TSP.2021.3085116 |
21 |
ZHOU P L , LIN C Y , ZHOU C , et al. Tensor factorization for low-rank tensor completion[J]. IEEE Trans. on Image Processing, 2018, 27 (3): 1152- 1163.
doi: 10.1109/TIP.2017.2762595 |
22 |
B AI , Y Q . Nonconvex tensor relative total variation for image completion[J]. Mathematics, 2023, 11 (7): 1682- 1699.
doi: 10.3390/math11071682 |
23 | KESHAVAN A H , MONTANARI A , OH S . Matrix completion from noisy entries[J]. Journal of Machine Learning Research, 2010, 11 (3): 2057- 2078. |
24 | RECHT B . Simpler approach to matrix completion[J]. Journal of Machine Learning Research, 2011, 12 (7): 3413- 3430. |
25 |
CANDES E J , PLAN Y . Matrix completion with noise[J]. Proc.of the IEEE, 2010, 98 (6): 925- 936.
doi: 10.1109/JPROC.2009.2035722 |
26 | 王彩云, 赵焕玥, 王佳宁, 等. 快速加权核范数最小化的SAR图像去噪算法[J]. 系统工程与电子技术, 2019, 41 (7): 1504- 1508. |
WANG C Y , ZHAO H Y , WANG J N , et al. SAR image denoising via fast weighted nuclear norm minimization[J]. Systems Engineering and Electronics, 2019, 41 (7): 1504- 1508. | |
27 |
HESTENES M . Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 1969, 4, 303- 320.
doi: 10.1007/BF00927673 |
28 |
JI T Y , HUANG T Z , ZHAO X L , et al. Tensor completion using total variation and low-rank matrix factorization[J]. Information Sciences, 2016, 326, 243- 257.
doi: 10.1016/j.ins.2015.07.049 |
29 | TOH K C , YUN S . An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6 (3): 615- 640. |
30 | ZHANG W , YANG J , LI Q , et al. Cooperative electromagnetic data annotation via low-rank matrix completion[J]. Remote Sensing, 2023, 15 (1): 121- 130. |
[1] | 薛锡瑞, 黄树彩, 韦道知, 吴建峰. 基于EMD-DESN的无人机集群航迹目的地预测[J]. 系统工程与电子技术, 2024, 46(1): 290-299. |
[2] | 张慧芝, 张天骐, 方蓉, 罗庆予. 基于SVD-K-means算法的软扩频信号伪码序列盲估计[J]. 系统工程与电子技术, 2024, 46(1): 326-333. |
[3] | 周必雷, 李荣锋, 陈辉, 陈浩, 戴凌燕, 刘维建, 李槟槟. 时域离散类主瓣干扰下基于样本识别的雷达和差测角方法[J]. 系统工程与电子技术, 2023, 45(12): 3764-3771. |
[4] | 唐辰, 涂喜梅, 陆晓刚, 张琦, 张小贝. 基于四维混沌系统的改进AES图像加密算法[J]. 系统工程与电子技术, 2023, 45(12): 4040-4051. |
[5] | 陈任飞, 彭勇, 李忠文. 基于持续无监督域适应策略的水面漂浮物目标检测方法[J]. 系统工程与电子技术, 2023, 45(11): 3391-3401. |
[6] | 季策, 宋博翰, 耿蓉, 梁敏骏. 快时变信道下基于深度学习的OFDM系统信道估计[J]. 系统工程与电子技术, 2023, 45(11): 3649-3655. |
[7] | 王垚, 王聪, 王翔, 黄知涛. 一种基于软判决的非删余极化码参数识别算法[J]. 系统工程与电子技术, 2023, 45(10): 3293-3301. |
[8] | 毛毅, 段永胜, 黄中瑞, 张峻宁. 一种在脉冲噪声环境下的最大相关熵目标直接定位算法[J]. 系统工程与电子技术, 2023, 45(9): 2651-2658. |
[9] | 胡毅立, 赵永波, 陈胜, 张梅, 牛奔. 圆柱极化敏感阵列降维插值角度估计方法[J]. 系统工程与电子技术, 2023, 45(9): 2659-2666. |
[10] | 孙志国, 王杰, 孙溶辰, 白永珍, 李齐衡. 基于噪声圆形特性的宽带相干信号DOA估计方法[J]. 系统工程与电子技术, 2023, 45(9): 2667-2672. |
[11] | 邓杰, 尹洁昕, 杨宾. 面向非圆信号的四阶累积量直接定位方法[J]. 系统工程与电子技术, 2023, 45(9): 2690-2697. |
[12] | 孙世岩, 张钢, 梁伟阁, 佘博, 田福庆. 基于改进受限玻尔兹曼机的滚动轴承健康因子构建方法[J]. 系统工程与电子技术, 2023, 45(9): 2979-2985. |
[13] | 邵凯, 杜自群, 王光宇. 基于模型剪枝动态调整压缩率的CSI反馈方法[J]. 系统工程与电子技术, 2023, 45(8): 2615-2622. |
[14] | 倪萌钰, 陈辉, 王晓戈, 李槟槟, 张昭建. 同轨收发卫星雷达基线长度及杂波特性分析[J]. 系统工程与电子技术, 2023, 45(8): 2498-2505. |
[15] | 邓喆, 雷菁, 孙承哲. 跳频信号盲检测的半监督干扰对消方法[J]. 系统工程与电子技术, 2023, 45(7): 2236-2248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||