系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 381-390.doi: 10.12305/j.issn.1001-506X.2024.02.02

• 电子技术 • 上一篇    

基于低秩张量完备的电磁大数据标注补全算法

孙国敏1, 张伟1,2,*, 邵怀宗1, 方旖3, 李鹏飞2   

  1. 1. 电子科技大学信息与通信工程学院, 四川 成都 611731
    2. 电磁空间安全全国重点实验室, 四川 成都 610036
    3. 电磁空间认知与智能控制技术实验室, 北京 100083
  • 收稿日期:2023-03-28 出版日期:2024-01-25 发布日期:2024-02-06
  • 通讯作者: 张伟
  • 作者简介:孙国敏(1989—), 女, 助理研究员, 博士, 主要研究方向为辐射源识别
    张伟(1985—), 男, 高级工程师, 博士, 主要研究方向为认知电子对抗
    邵怀宗(1969—), 男, 教授, 博士, 主要研究方向为电磁认知与应用
    方旖(1995—), 女, 助理研究员, 硕士, 主要研究方向为电磁空间认知与智能控制
    李鹏飞(1993—), 男, 高级工程师, 博士, 主要研究方向为电子对抗
  • 基金资助:
    国家自然科学基金(U20B2070)

A low-rank tensor completion based method for electromagnetic big data annotation recovery

Guomin SUN1, Wei ZHANG1,2,*, Huaizong SHAO1, Yi FANG3, Pengfei LI2   

  1. 1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
    2. National Key Laboratory of Electromagnetic Space Security, Chengdu 610036, China
    3. Laboratory of Electromagnetic Space Cognition and Intelligent Control, Beijing 100083, China
  • Received:2023-03-28 Online:2024-01-25 Published:2024-02-06
  • Contact: Wei ZHANG

摘要:

全面、准确的电磁数据标注是电磁大数据智能分析的前提和基础。针对战场博弈强对抗条件下电磁感知数据存在的标注率低、标注信息错误冗余等问题, 提出基于张量完备理论的标注补全方案。理论上, 同一场景下的同一目标, 利用不同感知平台观测提取的特征参数(如雷达脉冲参数)是相似(低秩)的, 且在一段观测时间内的测量结果是分段连续光滑的。故跨平台接收的目标数据标注补全可以建模为基于低秩张量完备的特征复原模型, 并引入全变分正则来刻画一段时间内特征参数的分段连续光滑属性。由于模型非凸, 使用基于矩阵最大秩分解的非凸近似算法进行迭代求解。通过仿真数据以及雷达脉冲描述字实侦数据并对模型的性能进行测试。实验结果表明, 所提方法在目标特征标注信息严重缺失的情况下能够很好地实现标注补全, 同时具有一定的标注纠错功能。

关键词: 标注补全, 电磁大数据, 低秩矩阵恢复

Abstract:

Comprehensive and accurate labeling of electromagnetic data is the prerequisite and foundation for intelligent analysis of electromagnetic big data. Aiming at the problems of low labeling rate and error redundant labeling information in electromagnetic sensing data under the condition of strong confrontation in battlefield games, an annotation and completion scheme based on tensor completeness theory is proposed. Theoretically, the feature parameters (such as radar pulse parameters) extracted from the observation of the same target using different sensing platforms in the same scene are similar (low-rank), and the measurement results over a period of observation time are piece-wise continuous and smooth. Therefore, the annotation and completion of target data received across platforms can be modeled as a feature restoration model based on low rank tensor completeness, and total variation regularization is introduced to characterize the piece-wise continuous smooth attributes of feature parameters over a period of time. Because the model is non-convex, a non-convex approximation algorithm based on the maximum rank decomposition of the matrix is used for iterative solution. The performance of the model is tested through simulation data and radar pulse description word (PDW) real detection data. The experimental results show that the proposed method can well achieve annotation and completion in the case of severe lack of target feature annotation information, and correct annotation errors efficiently.

Key words: annotation and completion, electromagnetic big data, low-rank tensor completion

中图分类号: