系统工程与电子技术 ›› 2023, Vol. 46 ›› Issue (1): 334-344.doi: 10.12305/j.issn.1001-506X.2024.01.38

• 通信与网络 • 上一篇    

基于高斯似然的精准水声信道估计

杨光1,2, 乔培玥1,*, 梁俊燕1, 秦正昌1, 巩小东3,4, 倪秀辉3,4   

  1. 1. 青岛理工大学信息与控制工程学院青岛市水声通信及探测装备技术创新中心, 山东 青岛 266525
    2. 南洋理工大学电气与电子工程学院, 新加坡 639798
    3. 山东省科学院海洋仪器仪表研究所, 山东 青岛 266318
    4. 乌克兰国立技术大学(基辅工学院), 乌克兰 基辅 03056
  • 收稿日期:2022-10-28 出版日期:2023-12-28 发布日期:2024-01-11
  • 通讯作者: 乔培玥
  • 作者简介:杨光(1981—), 男, 副教授, 博士, 主要研究方向为运动海洋通信、智能海洋通信
    乔培玥(1999—), 女, 硕士研究生, 主要研究方向为水声通信
    梁俊燕(1999—), 女, 硕士研究生, 主要研究方向为水声通信
    秦正昌(1999—), 男, 硕士研究生, 主要研究方向为水声通信
    巩小东(1985—), 男, 副研究员, 硕士, 主要研究方向水声通信、水声电子
    倪秀辉(1981—), 男, 副研究员, 硕士, 主要研究方向水声信号处理、模拟电路
  • 基金资助:
    国家自然科学基金(61771271);山东省自然科学基金面上项目(ZR2020MF010);山东省自然科学基金面上项目(ZR2020MF001);青岛市源头创新计划-青年专项(19-6-2-4-cg);青岛市关键技术攻关及产业化示范类项目“多节点智能海洋装备布设回收系统关键技术研究和应用示范”(22-3-3-hygg-8-hy)

Accurate underwater acoustic channel estimation based on Gaussian likelihood

Guang YANG1,2, Peiyue QIAO1,*, Junyan LIANG1, Zhengchang QIN1, Xiaodong GONG3,4, Xiuhui NI3,4   

  1. 1. Qingdao Technical Innovation Center for Underwater Acoustic Communication and Detection Equipment, School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
    2. School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
    3. Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266318, China
    4. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv 03056, Ukraine
  • Received:2022-10-28 Online:2023-12-28 Published:2024-01-11
  • Contact: Peiyue QIAO

摘要:

针对时变水声信道的多途干扰问题, 提出基于高斯似然(Gaussian likelihood, GL)的精准水声信道估计算法。GL算法将相邻信道短块的高斯概率密度函数相乘, 乘积仍然服从高斯分布, 且方差变小, 从而进一步提高信道估计的准确性; 采用叠加训练(superimposed training, ST)方案, 将训练序列和符号序列线性叠加, 使训练序列持续传输, 实现对信道的实时跟踪。将ST方案、GL算法和Turbo均衡以迭代的方式相结合, 估计出的符号序列作为虚拟训练序列, 进一步提高时变水声信道的估计和跟踪性能。通过多次迭代计算, 实现时变水声信道的精准估计和实时跟踪。最后, 通过计算机仿真以及胶州湾收发节点水平距离500 m和5.5 km的海上运动实装试验, 验证了所提算法的有效性。

关键词: 时变水声信道, 高斯似然, 叠加训练方案, 虚拟训练序列

Abstract:

Aiming at the multi-path interference problem of the time-varying underwater acoustic channel, an accurate underwater acoustic channel estimation algorithm based on Gaussian likelihood (GL) is proposed. The Gauss probability density functions of the multiple segments are multiplied, the product result still follows the Gauss distribution, and the variance becomes smaller, leading to the improvement of channel estimation accuracy. The superimposed training (ST) scheme is used, where the training sequence and the symbol sequence are linearly superimposed, so that the training sequence can be continuously transmitted, thereby the real-time tracking of the time-varying channel is realized. The ST scheme, GL algorithm, and Turbo equalization are jointly performed in an iterative manner, where the estimated symbol sequence is used as a virtual training sequence to further improve the estimation and tracking performance of the channel. Accurate estimation and real-time tracking of the time-varying underwater acoustic channel are realized through multiple iteration calculation. Finally, the effectiveness of the proposed algorithm is verified by simulation and experimental results (the horizontal distance of the moving transceivers is 500 m and 5.5 km) in Jiaozhou Bay.

Key words: time-varying underwater acoustic channel, Gaussian likelihood (GL), superimposed training (ST) scheme, virtual training sequence

中图分类号: