1 |
CHEN H , HEIDARI A A , CHEN H , et al. Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies[J]. Future Generation Computer Systems, 2020, 111, 175- 198.
doi: 10.1016/j.future.2020.04.008
|
2 |
RODRÍGUEZ-ESPARZA E , ZANELLA-CALZADA L A , OLIVA D , et al. An efficient Harris hawks-inspired image segmentation method[J]. Expert Systems with Applications, 2020, 155, 113428.
doi: 10.1016/j.eswa.2020.113428
|
3 |
SONG S , WANG P , HEIDARI A A , et al. Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J]. Knowledge-Based Systems, 2021, 215, 106425.
doi: 10.1016/j.knosys.2020.106425
|
4 |
THAHER T , HEIDARI A A , MAFARJA M , et al. Evolutionary machine learning techniques. Algorithms for intelligent systems: binary harris hawks optimizer for high-dimensional, low sample size feature selection[M]. Singapore: Springer, 2020.
|
5 |
WEI Y , LV H , CHEN M , et al. Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone Harris hawks optimizer[J]. IEEE Access, 2020, 8, 76841- 76855.
doi: 10.1109/ACCESS.2020.2982796
|
6 |
ZHANG Y , LIU R , WANG X , et al. Boosted binary Harris hawks optimizer and feature selection[J]. Engineering with Computers, 2021, 37 (4): 3741- 3770.
doi: 10.1007/s00366-020-01028-5
|
7 |
汤安迪, 韩统, 徐登武, 等. 使用高斯分布估计策略的改进樽海鞘群算法[J]. 系统工程与电子技术, 2022, 44 (7): 2229- 2240.
|
|
TANG A D , HAN T , XU D W , et al. An improved salp swarm algorithm using Gaussian distribution estimation strategy[J]. Systems Engineering and Electronics, 2022, 44 (2): 2229- 2240.
|
8 |
MIRJALILI S , MOHAMMAD S , LEWIS A . Grey Wolf optimizer[J]. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007
|
9 |
CHANTAR H , MAFARJA M , ALSAWALQAH H , et al. Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification[J]. Neural Computing and Applications, 2020, 32 (16): 12201- 12220.
doi: 10.1007/s00521-019-04368-6
|
10 |
HEIDARI A A , PAHLAVANI P . An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied Soft Computing Journal, 2017, 60, 115- 134.
doi: 10.1016/j.asoc.2017.06.044
|
11 |
HEIDARI A A , ALI ABBASPOUR R , CHEN H . Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training[J]. Applied Soft Computing Journal, 2019, 81, 105521.
doi: 10.1016/j.asoc.2019.105521
|
12 |
KARABOGA D , AKAY B . A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214 (1): 108- 132.
doi: 10.1016/j.amc.2009.03.090
|
13 |
YAVUZ G , DURMUŞ B , AYDIN D . Artificial bee colony algorithm with distant savants for constrained optimization[J]. Applied Soft Computing, 2022, 116, 108343.
doi: 10.1016/j.asoc.2021.108343
|
14 |
THIRUGNANASAMBANDAM K , RAJESWARI M , BHATTACHARYYA D , et al. Directed artificial bee colony algorithm with revamped search strategy to solve global numerical optimization problems[J]. Automated Software Engineering, 2022, 29, 13.
doi: 10.1007/s10515-021-00306-w
|
15 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
16 |
CAO Y , WANG Q , CHENG W , et al. Risk-constrained optimal operation of fuel cell/photovoltaic/battery/grid hybrid energy system using downside risk constraints method[J]. International Journal of Hydrogen Energy, 2020, 45 (27): 14108- 14118.
doi: 10.1016/j.ijhydene.2020.03.090
|
17 |
CHEN H , YANG C , HEIDARI A A , et al. An efficient double adaptive random spare reinforced whale optimization algorithm[J]. Expert Systems with Applications, 2020, 154, 113018.
doi: 10.1016/j.eswa.2019.113018
|
18 |
HEIDARI A A , ALJARAH I , FARIS H , et al. An enhanced associative learning-based exploratory whale optimizer for global optimization[J]. Neural Computing and Applications, 2020, 32 (9): 5185- 5211.
doi: 10.1007/s00521-019-04015-0
|
19 |
LUO J , CHEN H , HEIDARI A A , et al. Multi-strategy boosted mutative whale-inspired optimization approaches[J]. Applied Mathematical Modelling, 2019, 73, 109- 123.
doi: 10.1016/j.apm.2019.03.046
|
20 |
MAFARJA M , HEIDARI A A , HABIB M , et al. Augmented whale feature selection for IoT attacks: structure, analysis and applications[J]. Future Generation Computer Systems, 2020, 112, 18- 40.
doi: 10.1016/j.future.2020.05.020
|
21 |
TU J , CHEN H , LIU J , et al. Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance[J]. Knowledge-Based Systems, 2020, 212, 106642.
|
22 |
WANG M , CHEN H . Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis[J]. Applied Soft Computing Journal, 2020, 88, 1- 20.
|
23 |
WOLPERT D H , NNA D , ROAD H , et al. No free lunch theorems for optimization[J]. IEEE Trans. on Evolutionary Computation, 1997, 1 (1): 67- 82.
doi: 10.1109/4235.585893
|
24 |
MIRJALILI S , GANDOMI A H , MIRJALILI S Z , et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114, 163- 191.
doi: 10.1016/j.advengsoft.2017.07.002
|
25 |
QAIS M H , HASANIEN H M , ALGHUWAINEM S . Enhanced salp swarm algorithm: application to variable speed wind generators[J]. Engineering Applications of Artificial Intelligence, 2019, 80, 82- 96.
doi: 10.1016/j.engappai.2019.01.011
|
26 |
王宗山, 丁洪伟, 王杰, 等. 基于正交设计的折射反向学习樽海鞘群算法[J]. 哈尔滨工业大学学报, 2022, 54 (11): 122- 136.
|
|
WANG Z S , DING H W , WANG J , et al. Salp swarm algorithm based on orthogonal refracted opposition-based learning[J]. Journal of Harbin Institute of Technology, 2022, 54 (11): 122- 136.
|
27 |
黄小根, 钟尚勤. 一种多策略驱动的改进樽海鞘群算法[J]. 计算机仿真, 2022, 39 (1): 308- 311.
doi: 10.3969/j.issn.1006-9348.2022.01.065
|
|
HUANG X G , ZHONG S Q . A multi-strategy-driven salp swarm algorithm for global optimization[J]. Computer Simulation, 2022, 39 (1): 308- 311.
doi: 10.3969/j.issn.1006-9348.2022.01.065
|
28 |
陈忠云, 张达敏, 辛梓芸. 多子群的共生非均匀高斯变异樽海鞘群算法[J]. 自动化学报, 2022, 48 (5): 1307- 1317.
|
|
CHEN Z Y , ZHANG D M , XIN Z Y . Multi-subpopulation based symbiosis and non-uniform gaussian mutation salp swarm algorithm[J]. Acta Automatica Sinica, 2022, 48 (5): 1307- 1317.
|
29 |
陈忠云, 张达敏, 辛梓芸. 正弦余弦算法的樽海鞘群算法[J]. 计算机应用与软件, 2020, 37 (9): 209- 214.
|
|
CHEN Z Y , ZHANG D M , XIN Z Y . Salp swarm algorithm using sine cosine algorithm[J]. Computer Applications and Software, 2020, 37 (9): 209- 214.
|
30 |
杨博, 钟林恩, 朱德娜, 等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用, 2019, 36 (3): 339- 352.
|
|
YANG B , ZHONG L E , ZHU D N , et al. Modified salp swarm algorithm based maximum power point tracking of power-voltage system under partial shading condition[J]. Control Theory and Applications, 2019, 36 (3): 339- 352.
|
31 |
OZBAY F A , ALATAS B . Adaptive salp swarm optimization algorithms with inertia weights for novel fake news detection model in online social media[J]. Multimedia Tools and Applications, 2021, 80, 34333- 34357.
doi: 10.1007/s11042-021-11006-8
|
32 |
BRAIK M , SHETA A , TURABIEH H , et al. A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm[J]. Soft Computing, 2021, 25 (1): 181- 206.
doi: 10.1007/s00500-020-05130-0
|
33 |
邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47 (2): 363- 377.
|
|
XING Z K , JIA H M , SONG W L . Levyflight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta Automatica Sinica, 2021, 47 (2): 363- 377.
|
34 |
NAUTIYAL B , PRAKASH R , VIMAL V , et al. Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems[J]. Engineering with Computers, 2021, 38, 3927- 3949.
|
35 |
周密, 王潇棠, 闫河, 等. 一种混沌映射动态惯性权重的樽海鞘群算法[J]. 小型微型计算机系统, 2023, 44 (2): 131- 318.
|
|
ZHOU M , WANG X T , YAN H , et al. Salp swarm algorithm based on chaotic map and dynamic inertia weight[J]. Journal of Chinese micro Computer Systems, 2023, 44 (2): 131- 318.
|