系统工程与电子技术 ›› 2023, Vol. 46 ›› Issue (1): 280-289.doi: 10.12305/j.issn.1001-506X.2024.01.32

• 制导、导航与控制 • 上一篇    

改进的多项式曲线拟合轨迹预测算法

黄万炎1, 杜万和1,2,*, 杨淑珍1,2, 俞涛1   

  1. 1. 上海大学机电工程与自动化学院, 上海 200444
    2. 上海第二工业大学智能制造与控制工程学院, 上海 201209
  • 收稿日期:2022-09-27 出版日期:2023-12-28 发布日期:2024-01-11
  • 通讯作者: 杜万和
  • 作者简介:黄万炎 (1990—), 男, 硕士研究生, 主要研究方向为3D轮廓检测及轨迹预测
    杜万和 (1988—), 男, 讲师, 博士研究生, 主要研究方向为智能制造、计算机视觉、移动机器人
    杨淑珍 (1978—), 女, 副教授, 博士, 主要研究方向为智能控制、机器人
    俞涛 (1968—), 男, 教授, 博士, 主要研究方向为机电一体化技术和计算机集成制造系统

Trajectory prediction algorithm based on improved polynomial curve fitting

Wanyan HUANG1, Wanhe DU1,2,*, Shuzhen YANG1,2, Tao YU1   

  1. 1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
    2. School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • Received:2022-09-27 Online:2023-12-28 Published:2024-01-11
  • Contact: Wanhe DU

摘要:

针对传统多项式曲线拟合轨迹预测算法对复杂多变的轨迹预测准确率不高问题, 提出改进的多项式曲线拟合轨迹预测算法。首先, 获得轨迹的曲率、挠率阈值; 然后, 通过该阈值识别预测误差可能较大的轨迹部位, 并采用插值滚动预测算法进行预测; 最后, 采用双误差预测值更新算法, 对预测值进行更新。仿真结果表明, 相较于传统多项式曲线拟合轨迹预测算法, 所提算法的平均位移误差(average displacement error, ADE)下降了42.77%, 最终位移误差(final displacement error, FDE)下降了36.62%, 从而验证了所提算法的可行性和有效性。

关键词: 多项式曲线拟合, 轨迹预测, 曲率, 挠率, 误差

Abstract:

Aiming at the problem that the traditional polynomial curve fitting trajectory prediction algorithm is not accurate enough for complex and changeable trajectory prediction, an improved polynomial curve fitting trajectory prediction algorithm is proposed. Firstly, the curvature and torsion thresholds of the trajectory are obtained. Secondly, the trajectory parts with larger prediction errors are identified by the thresholds above, and the interpolation rolling prediction algorithm is used for prediction. Finally, the double errors predictive value update algorithm is used to update the predicted value. Simulation results show that compared with the traditional polynomial curve fitting trajectory prediction algorithm, the average displacement error (ADE) of the proposed algorithm decreases by 42.77%. The final displacement error (FDE) reduces by 36.62%, which verifies the feasibility and the effectiveness of the proposed algorithm.

Key words: polynomial curve fitting, trajectory prediction, curvature, torsion, error

中图分类号: