1 |
SHI K , LIU C , BIGGS J D . Observer-based control for spacecraft electromagnetic docking[J]. Aerospace Science and Technology, 2020, 99, 105759- 105765.
doi: 10.1016/j.ast.2020.105759
|
2 |
TAKAHASHI Y , SAKAMOTO H , SAKAI S . Kinematics control of electromagnetic formation flight using angular-momentum conservation constraint[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (2): 280- 295.
doi: 10.2514/1.G005873
|
3 |
SHOER J, PEEK M. A flux-pinned magnet-superconductor pair for close-proximity station keeping and self-Assembly of spacecraft[C]//Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.
|
4 |
ZHAO C Z, MENG Q L, LIANG J X, et al. Identification of the full inertial parameters of a non-cooperative target with eddy current detumbling[C]//Proc. of the AIAA Scitech Forum, 2020.
|
5 |
ASAM S. Electromagnetic formation flight dipole solution plaining[D]. Massachusetts: Massachusetts Institute of Technology, 2006.
|
6 |
OLIVEIER L , SANSONE F , DUZZI M , et al. TED project: conjugating technology development and educational activities[J]. Aerospace, 2019, 6 (6): 73- 89.
doi: 10.3390/aerospace6060073
|
7 |
ZHANG Y W , ZHAO H L . Magnetic-frozen plasma loop far-distance deliver and electromagnetic capture of companion spacecraft[J]. Advances in Space Research, 2023, 71 (8): 3281- 3289.
doi: 10.1016/j.asr.2022.12.019
|
8 |
宋健, 李嘉雯, 白晓东, 等. 外电极长度对同轴枪放电等离子体特性的影响[J]. 物理学报, 2021, 70 (10): 105201.
|
|
SONG J , LI J W , BAI X D , et al. Effect of length of outer electrode on plasma characteristics in coaxial gun[J]. Acta Physica Sinica, 2021, 70 (10): 105201.
|
9 |
赵繁涛, 宋健, 张津硕, 等. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响[J]. 物理学报, 2021, 70 (20): 205202.
|
|
ZHAO F T , SONG J , ZHANG J S , et al. Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics[J]. Acta Physica Sinica, 2021, 70 (20): 205202.
|
10 |
张俊龙, 杨亮, 闫慧杰, 等. 放电参数对同轴枪中等离子体团的分离的影响[J]. 物理学报, 2015, 64 (7): 075201.
|
|
ZHANG J L , YANG L , YAN H J , et al. Influence of discharge parameters on blow-by in a coaxial plasma gun[J]. Acta Physica Sinica, 2015, 64 (7): 075201.
|
11 |
MATSUMOTO T , ROCHE T , ALLFREY T , et al. Characterization of compact-toroid injection during formation, translation, and field penetration[J]. Review of Scientific Instruments, 2016, 11 (87): 11D406.
|
12 |
EDO T , ASAI T , TANAKA F , et al. Performance improvement of a magnetized coaxial plasma gun by adopting iron-core bias coil and preionization systems[J]. Plasma and Fusion Research, 2018, 13, 3405062- 3405072.
doi: 10.1585/pfr.13.3405062
|
13 |
李健. 基于粒子模拟方法的磁等离子体推力器工作机理研究[D]. 长沙: 国防科技大学, 2020.
|
|
LI J. Mechanism analysis of magneto plasma dynamic thrusters based on particle simulation method[D]. Changsha: National University of Defense Technology, 2020.
|
14 |
郝剑昆. 螺旋波等离子体推力器地面实验原理样机设计[D]. 大连: 大连理工大学, 2015.
|
|
HAO J K. Principle prototype design for ground experiment of helicon plasma thruster[D]. Dalian: Dalian University of Technology, 2015.
|
15 |
YAMADA M , ONO Y , HAYAKAWA A , et al. Magnetic reconnection of plasma toroids with cohelicity and counter-helicity[J]. Physical Review Letters, 1990, 65 (6): 721- 724.
doi: 10.1103/PhysRevLett.65.721
|
16 |
DEGNAN J H , PETERKIN R E , BACA G P , et al. Compact toroid formation, compression, and acceleration[J]. Physics of Fluids B: Plasma Physics, 1993, 5 (8): 2938- 2958.
doi: 10.1063/1.860681
|
17 |
ONCHI T , MCCOLL D , ROHOLLAHI A , et al. Development toward a repetitive compact torus injector[J]. IEEE Trans.on Plasma Science, 2016, 2 (44): 195- 200.
|
18 |
ASAI T , MATSUMOTO T , ROCHE T , et al. Compact toroid injection fueling in a large field-reversed configuration[J]. Nuclear Fusion, 2017, 57 (7): 076018.
doi: 10.1088/1741-4326/aa6dcd
|
19 |
CHEN C , LAN T , XIAO C J , et al. Development of a compact torus injection system for the Keda Torus experiment[J]. Plasma Science and Technology, 2022, 24 (4): 1- 20.
|
20 |
DONG Q L , KONG D F , WU X H , et al. Investigation of the compact torus plasma motion in the KTX-CTI device based on circuit analyses[J]. Plasma Science and Technology, 2022, 24 (2): 025103.
doi: 10.1088/2058-6272/ac446e
|
21 |
QUINN W E , COMPACT T F . Compact toroid experiments: spheromaks and field-reversed configurations[J]. Nuclear Instruments and Methods in Physics Research, 1983, 207 (1-2): 121- 127.
doi: 10.1016/0167-5087(83)90228-4
|
22 |
SUZUKI Y , HAYASHI T , KISHIMOTO Y . Dynamics of spheromak-like compact toroids in a drift tube[J]. Nuclear Fusion, 2001, 41 (6): 769- 777.
doi: 10.1088/0029-5515/41/6/313
|
23 |
SUZUKI Y , HAYASHI T , KISHIMOTO Y . Theory and MHD simulation of fuelling by compact toroid injection[J]. Nuclear Fusion, 2001, 41 (7): 873- 881.
doi: 10.1088/0029-5515/41/7/308
|
24 |
SUZUKI Y , HAYASHI T , KISHIMOTO Y . Effect of magnetic reconnection on CT penetration into magnetized plasmas[J]. Earth, Planets and Space, 2001, 53 (6): 547- 551.
doi: 10.1186/BF03353268
|
25 |
ZHAI X , LI H , BELLAN P M , et al. Three-dimensional MHD simulation of the caltech plasma jet experiment: first results[J]. Earth, Planets and Space, 2001, 53 (6): 547- 551.
doi: 10.1186/BF03353268
|
26 |
KOZLOV A N . The study of high-velocity flow injection into the set of magnetic field coils coupled to plasma accelerator[J]. Plasma Physics and Controlled Fusion, 2019, 61 (3): 035008.
doi: 10.1088/1361-6587/aaf772
|
27 |
TAN M S , LI H , TU C , et al. MHD mode analysis using the unevenly spaced mirnov coils in the Keda Torus experiment[J]. IEEE Trans.on Plasma Science, 2019, 47 (7): 3298- 3304.
doi: 10.1109/TPS.2019.2918300
|
28 |
SHEN Z G , LIU C H , LEE C H , et al. A study of a coaxial plasma gun[J]. Journal of Physics D: Applied Physics, 1995, 28 (2): 314- 318.
doi: 10.1088/0022-3727/28/2/013
|
29 |
VYAS A C, CASSIBRY J T. Numerical modeling of compact toroid formation and propagation for magneto-inertial fusion research[C]//Proc. of the AIAA Propulsion and Energy, 2020.
|
30 |
PERKINS L J , HO S K , HAMMER J H . Deep penetration fuelling of reactor-grade tokamak plasmas with accelerated compact toroids[J]. Nuclear Fusion, 1988, 28 (8): 1365- 1378.
doi: 10.1088/0029-5515/28/8/005
|
31 |
ZHAO H L, ZHANG Y W, YANG L P, et al. Particles motion analysis in compact toroid for long-distance deliver of magnetic field[C]//Proc. of the 41st Chinese Control Conference, 2022.
|
32 |
MA T, ZHAO H L, CHEN P L, et al. Long-range delivery and high-efficiency actuation of magnetic freezing compact toroid for failed spacecraft despinning[C]//Proc. of the International Conference on Autonomous Unmanned Systems, 2023.
|
33 |
朱昊逵. 面向航天器消旋的电磁装置设计与涡流磁场建模[D]. 长沙: 国防科技大学, 2021.
|
|
ZHU H K. Electromagnetic mechanism design and eddy current magnetic field modeling for spacecraft despinning[D]. Changsha: National University of Defense Technology, 2021.
|