1 |
XU W J , MA D F . A framework for model and verification of safety-critical operating system based on ARINC653[J]. Electronics, 2021, 10 (16): 1934.
doi: 10.3390/electronics10161934
|
2 |
GUO X , LIU Y , ZHAO W , et al. Supporting resilient conceptual design using functional decomposition and conflict resolution[J]. Advanced Engineering Informatics, 2021, 48, 101262.
doi: 10.1016/j.aei.2021.101262
|
3 |
廖万斌, 曹云峰, 王新尧. 面向复杂系统需求分析的DSL构建[J]. 系统工程与电子技术, 2022, 44 (11): 3443- 3454.
|
|
LIAO W B , CAO Y F , WANG X Y , et al. DSL building for requirement analysis of complex system[J]. Systems Engineering and Electronics, 2022, 44 (11): 3443- 3454.
|
4 |
MOITRA A , SIU K , CRAPO A W , et al. Automating requirements analysis and test case generation[J]. Requirements Engineering, 2019, 24 (3): 341- 364.
doi: 10.1007/s00766-019-00316-x
|
5 |
WANG Y , LUO L K , LIU H . Bridging the semantic gap between customer needs and design specifications using user-generated content[J]. IEEE Trans.on Engineering Management, 2020, 64 (4): 1622- 1634.
|
6 |
LI M, MENG B L, YU H, et al. Requirements-based automated test generation for safety critical software[C]//Proc. of the IEEE/AIAA 38th Digital Avionics Systems Conference, 2019.
|
7 |
MAVIN A, WILKSINSON P, GREGORY S, et al. Listens learned (8 lessons learned applying EARS)[C]//Proc. of the IEEE 24th International Requirements Engineering Conference, 2016: 276-282.
|
8 |
FRIEDENTHAL S , MOORE A , STEINER R . A practical guide to SysML: the systems modeling language[M]. San Francisco: Morgan Kaufmann, 2014.
|
9 |
FU C , LIU J H , WANG S D . Building SysML model graph to support the system model reuse[J]. IEEE Access, 2021, 9, 132374- 132389.
doi: 10.1109/ACCESS.2021.3115165
|
10 |
OWL Working Group. OWL 2 Web ontology language document overview: W3C recommendation 27 October 2009[EB/OL]. [2022-07-01]. https://www.w3.org/TR/owl2-overview/.
|
11 |
PENG G Z , WANG H W , ZHANG H M , et al. A hypernetwork-based approach to collaborative retrieval and reasoning of engineering design knowledge[J]. Advanced Engineering Informatics, 2019, 42, 100956.
doi: 10.1016/j.aei.2019.100956
|
12 |
QIN F W, XU H R, ZHANG W C, et al. Voice of the customer oriented new product synthesis over knowledge graphs[C]//Proc. of the International Design Engineering Technical Confe-rences and Computers and Information in Engineering Confe-rence, 2018.
|
13 |
DAPOIGNY R, BARLATIER P. Specifying well-formed part-whole relations in COQ[C]//Proc. of the International Confe-rence on Conceptual Structures, 2014: 159-173.
|
14 |
TAIT W W . First-order logic without bound variables: compositional semantics[M]. Cham: Springer, 2014: 359- 384.
|
15 |
SEMERÁTH O , BARTA Á , HORVÁTH Á , et al. Formal validation of domain-specific languages with derived features and well-formedness constraints[J]. Software & Systems Mo-deling, 2017, 16 (2): 357- 392.
|
16 |
LU J , OU C Y , LIAO C , et al. Formal modelling of a sheet metal smart manufacturing system by using Petri nets and first-order predicate logic[J]. Journal of Intelligent Manufacturing, 2021, 32 (4): 1043- 1063.
doi: 10.1007/s10845-020-01602-0
|
17 |
LÚCIO L, RAHMAN S, CHENG C H, et al. Just formal enough? automated analysis of EARS requirements[C]//Proc. of the In NASA Formal Methods Symposium, 2017: 427-434.
|
18 |
王庆龙, 王智学, 何红悦, 等. 基于模糊-云模型的C4ISR系统效能需求建模与分析方法[J]. 系统工程与电子技术, 2016, 38 (9): 2065- 2071.
|
|
WANG Q L , WANG Z X , HE H Y , et al. Modeling and analysis method to C4ISR system for efficiency requirements based on fuzzy cloud model[J]. Systems Engineering and Electronics, 2016, 38 (9): 2065- 2071.
|
19 |
ATOUM I , BAKLIZI M , ALSMADI I , et al. Challenges of software requirements quality assurance and validation: a systematic literature review[J]. IEEE Access, 2021, 9, 137613- 137634.
doi: 10.1109/ACCESS.2021.3117989
|
20 |
LIMA L , MIYAZAWA A , CAVALCANTI A , et al. An integrated semantics for reasoning about SysML design models using refinement[J]. Software & Systems Modeling, 2017, 16, 875- 902.
|
21 |
GOKNIL A , KURTEV I , VAN D B K , et al. Semantics of trace relations in requirements models for consistency checking and inferencing[J]. Software & Systems Modeling, 2011, 10 (1): 31- 54.
|
22 |
ELFAKI A O . A rule-based approach to detect and prevent inconsistency in the domain-engineering process[J]. Expert Systems, 2016, 33 (1): 3- 13.
doi: 10.1111/exsy.12116
|
23 |
ZHANG J S , EL-GOHARY N M . Semantic-based logic representation and reasoning for automated regulatory compliance checking[J]. Journal of Computing in Civil Engineering, 2017, 31 (1): 04016037.
doi: 10.1061/(ASCE)CP.1943-5487.0000583
|
24 |
XUE X R , ZHANG J S . Regulatory information transformation ruleset expansion to support automated building code compliance checking[J]. Automation in Construction, 2022, 138, 104230.
doi: 10.1016/j.autcon.2022.104230
|
25 |
VIRIYASITAVAT W , XU L D , BI Z , et al. Extension of specification language for soundness and completeness of service workflow[J]. Enterprise Information Systems, 2018, 12 (5): 638- 657.
doi: 10.1080/17517575.2018.1432769
|
26 |
BHUSHAN M , GOEL S , KUMAR A . Improving quality of software product line by analysing inconsistencies in feature models using an ontological rule-based approach[J]. Expert Systems, 2018, 35 (3): e12256.
doi: 10.1111/exsy.12256
|
27 |
KAUFMANN M, MOORE J S. An ACL2 tutorial[C]//Proc. of the International Conference on Theorem Proving in Higher Order Logics, 2008: 17-21.
|
28 |
ARP4754A. Guidelines for development of civil aircraft and systems[S]. Warrendale: SAE International, Warrendale, 2010.
|
29 |
王文浩, 毕文豪, 张安, 等. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43 (10): 2884- 2892.
|
|
WANG W H , BI W H , ZHANG A , et al. Function modeling method of civil aircraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (10): 2884- 2892.
|
30 |
RYBAKOV M , SHKATOV D . Algorithmic properties of first-order superintuitionistic logics of finite Kripke frames in restricted languages[J]. Journal of Logic and Computation, 2021, 31 (2): 494- 522.
doi: 10.1093/logcom/exaa091
|
31 |
MANOLIOS P. Scalable methods for analyzing formalized requirements and localizing errors[P]. U.S. : Patent 9639450, 2017-05-02.
|
32 |
赵长啸, 李浩, 董磊, 等. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42 (5): 1083- 1092.
|
|
ZHAO C X , LI H , DONG L , et al. Safety analysis and evaluation of airborne HUD system based on STPA-Bayes model[J]. Systems Engineering and Electronics, 2020, 42 (5): 1083- 1092.
|