1 |
WANG Y G , ZENG Y L . Research on maritime navigation perception requirements of intelligent ships[J]. Journal of Physics: Conference Series, 2022, 2356 (1): 96- 98.
|
2 |
ZHAI P Y , ZHANG Y J , WANG S B . Intelligent ship collision avoidance algorithm based on DDQN with prioritized experience replay under COLREGs[J]. Journal of Marine Science and Engineering, 2022, 10 (5): 45- 46.
|
3 |
谢朔. 基于天牛须优化的船舶运动建模与避碰方法研究[D]. 武汉: 武汉理工大学, 2020.
|
|
XIE S. Research on ship motion modeling and collision avoidance method based on longicorn whisker optimization[D]. Wuhan: Wuhan University of Technology, 2020.
|
4 |
崔瑾娟. 基于遗传算法规划路径的船舶避碰系统[J]. 舰船科学技术, 2019, (12): 43- 45.
|
|
CUI J J . Ship collision avoidance system based on genetic algorithms for path planning[J]. Ship Science and Technology, 2019, (12): 43- 45.
|
5 |
MURRAY B, PERERA L P. A data-driven approach to vessel trajectory predictionfor safeautonomous vessel operations[C]//Proc. of the International Conference on DigitalInformation Ma-nagement, 2018: 240-247.
|
6 |
PERERA L , OLIVEIRA P , SOARES C . Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction[J]. IEEE Trans.on Intelligent Transportation Systems, 2012, 13 (3): 1188- 1200.
doi: 10.1109/TITS.2012.2187282
|
7 |
徐铁, 蔡奉君, 胡勤友, 等. 基于卡尔曼滤波算法船舶AIS轨迹估计研究[J]. 现代电子技术, 2014, 37 (5): 97- 100.
|
|
XU T , CAI F J , HU Q Y , et al. Research on ship AIS trajectory estimation based on Kalman filter algorithm[J]. Modern Electronic Technology, 2014, 37 (5): 97- 100.
|
8 |
MAZZARELLA F, ARGUEDAS V F, VESPE M. Knowledge-based vessel position prediction using historical AIS data[C]//Proc. of the Workshop on Sensor Data Fusion: Trends, Solutions, Applications, 2015.
|
9 |
LIU J , GUO Y S . Vessel trajectory prediction model based on AIS sensor data and adaptive chaos differential evolution support vector regression (ACDE-SVR)[J]. Applied Sciences, 2019, 9 (15): 2983.
doi: 10.3390/app9152983
|
10 |
MIZUNO N , KURODA M , OKAZAKI T , et al. Minimum time ship maneuvering method using neural network and nonlinear model predictive compensator[J]. Control Engineering Practice, 2007, 15 (6): 757- 765.
doi: 10.1016/j.conengprac.2007.01.002
|
11 |
LIN R Q , HUGHES M , SMITH T . Prediction of ship steering capabilities with a fully nonlinear ship motion model. Part 1: maneuvering in calm water[J]. Journal of Marine Science and Technology, 2010, 15 (2): 131- 142.
doi: 10.1007/s00773-010-0084-z
|
12 |
DASH A K , NAGARAJAN V , SHA O P . Bifurcation analysis of a high-speed twin-propeller twin-rudder ship maneuvering model in roll-coupling motion[J]. Nonlinear Dynamics, 2016, 83 (4): 2035- 2053.
doi: 10.1007/s11071-015-2463-9
|
13 |
LE Q I , ZHENG Z . Trajectory prediction of vessels based on data mining and machine learning[J]. Journal of Digital Information Management, 2016, 14 (1): 192- 196.
|
14 |
许玲, 邱晗. 船舶静水航行水动力模型的简化及其应用[J]. 安徽工业大学学报: 自然科学版, 2014, 31 (2): 162- 166.
|
|
XU L , QIU H . Simplification and application of hydrodynamic model for ships sailing in still water[J]. Journal of Anhui University of Technology: Natural Science Edition, 2014, 31 (2): 162- 166.
|
15 |
ABRAHA M S , RAISEEM G , BANIAS L G , et al. A robust and efficient stepwise regression method for building sparse polynomial chaos expansions[J]. Journal of Computational Physics, 2016, 332 (1): 461- 474.
|
16 |
ZHANG Y Y , WANG Z H , ZOU Z J . Black-box modeling of ship maneuvering motion based on multi-output nu-support vector regression with random excitation signal[J]. Ocean Engineering, 2022, 257, 111279.
doi: 10.1016/j.oceaneng.2022.111279
|
17 |
ZHUANG C X , CHEN C . Research on autonomous route generation method based on AIS ship trajectory big data and improved LSTM algorithm[J]. Frontiers in Neurorobotics, 2022, 16, 1049343.
doi: 10.3389/fnbot.2022.1049343
|
18 |
叶文哲. 基于机器学习和AIS数据的船舶轨迹预测模型的设计与实现[D]. 成都: 电子科技大学, 2022.
|
|
YE W Z. Design and implementation of ship trajectory prediction model based on machine learning and AIS data[D] Chengdu: University of Electronic Science and Technology of China, 2022.
|
19 |
HOU X R , ZOU Z J , LIU C . Nonparametric identification of nonlinear ship roll motion by using the motion response in irregular waves[J]. Applied Ocean Research, 2018, 73, 88- 99.
doi: 10.1016/j.apor.2018.02.004
|
20 |
KAWAN B, HAO W, LI G, et al. Data-driven modeling of ship motion prediction based on support vector regression[C]//Proc. of the 58th Conference on Simulation and Modelling, 2017.
|
21 |
BO Z, AIGUO S. Empirical mode decomposition based LSSVM for ship motion prediction[C]//Proc. of the International Symposium on Neural Networks, 2013.
|
22 |
RAN Y, SHI G Y, LI W F. Ship track prediction model based on automatic identification system data and bidirectional cyclic neural network[C]//Proc. of the 4th International Symposium on Traffic Transportation and Civil Architecture, 2021.
|
23 |
XU S , AN X , QIAO X D , et al. Multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2013, 34 (9): 1078- 1084.
doi: 10.1016/j.patrec.2013.01.015
|
24 |
PARK J , JEONG J S , PARK Y . Ship trajectory prediction based on Bi-LSTM using spectral-clustered AIS data[J]. Journal of Marine Science and Engineering, 2021, 9 (9): 725- 730.
|
25 |
郑洪清, 谢聪, 周永权. 一种改进的樽海鞘群算法[J]. 广西科学, 2022, 29 (2): 287- 292.
|
|
ZHENG H Q , XIE C , ZHOU Y Q . An improved coleoptile swarm algorithm[J]. Guangxi Science, 2022, 29 (2): 287- 292.
|
26 |
SANCHEZ-FERNANDEZ M , DE-PRADO-CUMPLIDO M , ARENAS-GARCIA J , et al. SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems[J]. IEEE Trans.on Signal Processing, 2004, 52 (8): 2298- 2307.
doi: 10.1109/TSP.2004.831028
|
27 |
FERNANDO P C, GUSTAU C V, EMILIO S O. et al. Multi-dimensional function approximation and regression estimation[C]//Proc. of the International Conference on Artificial Neural Networks, 2002.
|
28 |
高天航, 徐力, 靳廉洁, 等. 考虑航艏向与数据变化差异的船舶轨迹预测[J]. 交通运输系统工程与信息, 2021, 21 (1): 90- 94.
|
|
GAO T H, XU L, JIN L J, et al Ship trajectory prediction considering the difference between heading and data change[J]. Transportation System Engineering and Information, 2021, 21(1): 90-94.
|
29 |
黄纯颖, 曾庆敏, 陈玲红, 等. 基于粒子群支持向量回归优化的循环流化床床温预测分析[J]. 能源工程, 2022, 42 (3): 11- 17.
|
|
HUANG C Y , ZEND Q M , CHEN L H , et al. Prediction analysis of circulating fluidized bed temperature based on particle swarm support vector regression optimization[J]. Energy Engineering, 2022, 42 (3): 11- 17.
|
30 |
周欣然. 基于最小二乘支持向量机的在线建模与控制方法研究[D]. 长沙: 湖南大学, 2012.
|
|
ZHOU X R. Research on online modeling and control method based on least squares support vector machine[D]. Changsha: Hunan University, 2012.
|