系统工程与电子技术 ›› 2023, Vol. 46 ›› Issue (1): 152-161.doi: 10.12305/j.issn.1001-506X.2024.01.18

• 系统工程 • 上一篇    

间歇式信息传输条件下无人机搜索覆盖规划

曹志强, 张佳, 辛斌   

  1. 北京理工大学自动化学院, 北京 100081
  • 收稿日期:2022-10-09 出版日期:2023-12-28 发布日期:2024-01-11
  • 通讯作者: 辛斌
  • 作者简介:曹志强(1998—), 男, 硕士研究生, 主要研究方向为多智能体决策优化
    张佳(1980—), 女, 副教授, 博士, 主要研究方向为智能信息处理、多目标优化
    辛斌(1982—), 男, 教授, 博士, 主要研究方向为计算智能、多机器人系统
  • 基金资助:
    国家自然科学基金青年基金(61903036);国家自然科学基金优秀青年基金(61822304)

UAV search coverage planning under intermittent information transmission condition

Zhiqiang CAO, Jia ZHANG, Bin XIN   

  1. School of Automation, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-10-09 Online:2023-12-28 Published:2024-01-11
  • Contact: Bin XIN

摘要:

在基站通信范围受限条件下, 若无人机(unmanned aerial vehicle, UAV)执行覆盖搜索任务时经常返回至基站通信范围内实现间歇式信息传输, 能够扩展其覆盖区域和提高执行任务的灵活性。为最小化所有环境位点信息传回基站的时间之和, 需解决覆盖规划和间歇式通信时机选择的耦合问题。在覆盖的目标点较少且分散时, 采用改进的层次聚类方法求解每次往返需要覆盖的路径点集合。在需要进行区域全覆盖时, 则在求解完区域的覆盖路径后, 以最小化时间之和为目标, 对目标函数进行分析, 确定最优返回次数的搜索范围, 压缩解空间。对该搜索范围进行遍历搜索得到最优往返次数, 然后利用遗传算法优化UAV返回位点。与前沿算法对比, 所提算法在目标函数和覆盖路径质量上具有一定的提升。

关键词: 通信耦合, 层次聚类, 解空间压缩, 遗传算法

Abstract:

Under the limited communication range of the base station, if the unmanned aerial vehicle (UAV) often returns to the communication range of the base station to realize intermittent information transmission when conducting covering searching task, it can expand its coverage area and improve the flexibility of the execution of the mission. In order to minimize the sum of time for the information of all environmental sites to be transmitted back to the base station, the coupling problem of coverage planning and timing of intermittent communication should be solved. When the target points to be covered are few and scattered, the improved hierarchical clustering method is used to obtain the set of path points that need to be covered in each round trip. When it is necessary to carry out full coverage of the region, the following methods are adopted: after obtaining the coverage path of the region, the objective function is analyzed to minimize the sum of time, and the search range of optimal return times is determined to compress the solution space. The optimal round-trip times are obtained by traversing the search range, and then genetic algorithm is used to optimize the UAV return sites. Compared with the advanced algorithms, the objective function value and the quality of coverage path of the proposed algorithm is significantly improved.

Key words: communication coupling, hierarchical clustering, solution space compression, genetic algorithm

中图分类号: