1 |
何友, 关键, 孟祥伟, 等. 雷达自动检测和CFAR处理方法综述[J]. 系统工程与电子技术, 2001, 23 (1): 9- 14.
doi: 10.3321/j.issn:1001-506X.2001.01.003
|
|
HE Y , GUAN J , MENG X W , et al. Survey of automatic radar detection and CFAR processing[J]. Systems Engineering and Electronics, 2001, 23 (1): 9- 14.
doi: 10.3321/j.issn:1001-506X.2001.01.003
|
2 |
ZHANG B Q , XIE J H , ZHOU W . A Bayesian CFAR detector for interference control in Weibull clutter[J]. Digital Signal Processing, 2020, 104, 102781.
doi: 10.1016/j.dsp.2020.102781
|
3 |
GOURI A , MEZACHE A , OUDIRA H . Radar CFAR detection in Weibull clutter based on zlog(z) estimator[J]. Remote Sensing Letters, 2020, 11 (6): 581- 589.
doi: 10.1080/2150704X.2020.1744043
|
4 |
ZHANG B Q , ZHOU J , XIE J H , et al. Weighted likelihood CFAR detection for Weibull background[J]. Digital Signal Processing, 2021, 115, 103079.
doi: 10.1016/j.dsp.2021.103079
|
5 |
ZEBIRI K , MEZACHE A . Radar CFAR detection for multiple-targets situations for Weibull and log-normal distributed clutter[J]. Signal, Image and Video Processing, 2021, 15 (8): 1671- 1678.
doi: 10.1007/s11760-021-01905-6
|
6 |
许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9 (4): 684- 714.
|
|
XU S W , BAI X H , GUO Z X , et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9 (4): 684- 714.
|
7 |
时艳玲, 水鹏朗. 海面漂浮小目标的特征联合检测算法[J]. 电子与信息学报, 2012, 34 (4): 871- 877.
|
|
SHI Y L , SHUI P L . Feature united detection algorithm on floating small target of sea surface[J]. Journal of Electronics & Information Technology, 2012, 34 (4): 871- 877.
|
8 |
LI Y Z , XIE P C , TANG Z S , et al. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (8): 1225- 1229.
doi: 10.1109/LGRS.2019.2894385
|
9 |
郭子薰, 水鹏朗, 白晓惠, 等. 海杂波中基于可控虚警K近邻的海面小目标检测[J]. 雷达学报, 2020, 9 (4): 654- 663.
|
|
GUO Z X , SHUI P L , BAI X H , et al. Sea-surface small target detection based on K-NN with controlled false alarm rate in sea clutter[J]. Journal of Radars, 2020, 9 (4): 654- 663.
|
10 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
11 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
12 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
13 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
14 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
15 |
LIN T Y , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
16 |
施赛楠, 董泽远, 杨静, 等. 基于时频图自主学习的海面小目标检测[J]. 系统工程与电子技术, 2021, 43 (1): 33- 41.
|
|
SHI S N , DONG Z Y , YANG J , et al. Sea-surface small target detection based on autonomic learning of time-frequency graph[J]. Systems Engineering and Electronics, 2021, 43 (1): 33- 41.
|
17 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
|
18 |
HUANG X Q . Implementation of sensitivity time control signal processing for secondary radar[J]. Telecommunication Engineering, 2015, 55 (5): 570- 573.
doi: 10.3969/j.issn.1001-893x.2015.05.018
|
19 |
SONG C , WANG B N , XIANG M S , et al. A general framework for slow and weak range-spread ground moving target indication using airborne multichannel high-resolution radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5113616.
|
20 |
BHARAT K M , RAJESH K P . Bayesian fusion strategy for moving target detection in multichannel SAR framework[J]. Evolutionary Intelligence, 2022, 15 (2): 1411- 1424.
doi: 10.1007/s12065-020-00445-1
|
21 |
RYU J , MA J . Automatic target recognition of military SAR images using super-resolution based convolutional neural network[J]. Journal of Institute of Control, Robotics and Systems, 2022, 28 (1): 22- 27.
doi: 10.5302/J.ICROS.2022.21.0178
|
22 |
QU Q Z , WANG Y L , LIU W J , et al. A false alarm controllable detection method based on CNN for sea-surface small targets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4025705.
|
23 |
GRECO M , STINCO P , GINI F , et al. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Trans.on Aerospace and Electronic Systems, 2010, 46 (3): 1502- 1513.
doi: 10.1109/TAES.2010.5545205
|
24 |
CUI J Y , JIA H C , WANG H P , et al. A fast threshold neural network for ship detection in large-scene SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6016- 6032.
doi: 10.1109/JSTARS.2022.3192455
|
25 |
WANG D Y , ZHANG C K , HAN M . FIAD net: a fast SAR ship detection network based on feature integration attention and self-supervised learning[J]. International Journal of Remote Sensing, 2022, 43 (4): 1485- 1513.
doi: 10.1080/01431161.2022.2042617
|
26 |
FU J M , SUN X , WANG Z R , et al. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (2): 1331- 1344.
doi: 10.1109/TGRS.2020.3005151
|
27 |
CHEN S Q , ZHAN R H , WANG W , et al. Learning slimming SAR ship object detector through network pruning and know-ledge distillation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1267- 1282.
doi: 10.1109/JSTARS.2020.3041783
|
28 |
WEI S J , ZHOU Z C , WANG M , et al. 3DRIED: a high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13 (17): 3366- 3386.
doi: 10.3390/rs13173366
|
29 |
金添, 宋永坤, 戴永鹏, 等. UWB-HA4D-1.0: 超宽带雷达人体动作四维成像数据集[J]. 雷达学报, 2022, 11 (1): 27- 39.
|
|
JIN T , SONG Y K , DAI Y P , et al. UWB-HA4D-1.0: an ultra-wideband radar human activity 4D imaging dataset[J]. Journal of Radars, 2022, 11 (1): 27- 39.
|
30 |
BHATT S , SONI H , PAWAR T , et al. Diagnosis of pulmonary nodules on CT images using YOLOv4[J]. International Journal of Online and Biomedical Engineering, 2022, 18 (5): 131- 146.
|
31 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-08-01]. arxiv. org/abs/1511.07122v3.
|