14 |
SHAO P Y , WU J , WU C F , et al. Model and robust gain-scheduled PID control of a bio-inspired morphing UAV based on LPV method[J]. Asian Journal of Control, 2019, 21 (4): 1681- 1705.
doi: 10.1002/asjc.2187
|
15 |
WU Z H , LU J C , ZHAO Q , et al. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87 (4): 2367- 2383.
doi: 10.1007/s11071-016-3196-0
|
16 |
LIU C S , ZHANG S J . Novel robust control framework for morphing aircraft[J]. Journal of Systems Engineering and Electronics, 2013, 24 (2): 281- 287.
doi: 10.1109/JSEE.2013.00035
|
17 |
LU Y , SUN Y , LIU X D , et al. Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 826- 840.
doi: 10.23919/JSEE.2020.000056
|
18 |
刘正华, 温暖, 祝令谱. 变体飞行器有限时间收敛LPV鲁棒控制[J]. 系统工程与电子技术, 2018, 40 (6): 1325- 1330.
|
|
LIU Z H , WEN N , ZHU L P . Robust LPV control for morphing aircraft with finite-time convergence[J]. Systems Engineering and Electronics, 2018, 40 (6): 1325- 1330.
|
19 |
殷明, 陆宇平, 何真, 等. 变体飞行器变形辅助机动的建模与滑模控制[J]. 系统工程与电子技术, 2015, 37 (1): 128- 134.
|
|
YIN M , LU Y P , HE Z , et al. Modeling and sliding mode control of morphing-aided maneuver for morphing aircraft[J]. Systems Engineering and Electronics, 2015, 37 (1): 128- 134.
|
20 |
WEN N , LIU Z H , ZHU L P . Linear parameter varying based adaptive sliding mode control with bounded L2 gain performance for a morphing aircraft[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233 (5): 1847- 1864.
doi: 10.1177/0954410018764472
|
21 |
HE W , YAN Z C , SUN C Y , et al. Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer[J]. IEEE Trans.on Cybernetics, 2017, 47 (10): 3452- 3465.
doi: 10.1109/TCYB.2017.2720801
|
1 |
LI D , ZHAO S , DA R A , et al. A review of modelling and ana-lysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100 (6): 46- 62.
|
2 |
AJAJ R M , PARANCHEERIVILAKATHIL M S , AMOOZGAR M , et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120 (1): 100682.
|
3 |
KAMBAYASHI K , KOGISO N , YAMADA T , et al. Multiobjective topology optimization for a multi-layered morphing flap considering multiple flight conditions[J]. Trans.of the Japan Society for Aeronautical and Space Sciences, 2020, 63 (3): 90- 100.
doi: 10.2322/tjsass.63.90
|
4 |
CHU L L , LI Q , GU F , et al. Design, modeling, and control of morphing aircraft: a review[J]. Chinese Journal of Aeronautics, 2022, 35 (5): 220- 246.
doi: 10.1016/j.cja.2021.09.013
|
5 |
TSUSHIMA N , TAMAYAMA M . Recent researches on morphing aircraft technologies in Japan and other countries[J]. Mechanical Engineering Reviews, 2019, 6 (2): 19- 00197.
|
6 |
HARVEY C , GAMBLE L L , BOLANDER C R , et al. A review of avian-inspired morphing for UAV flight control[J]. Progress in Aerospace Sciences, 2022, 132 (7): 100825.
|
7 |
LIVNE E . Aircraft active flutter suppression: state of the art and technology maturation needs[J]. Journal of Aircraft, 2018, 55 (1): 410- 452.
doi: 10.2514/1.C034442
|
8 |
GONG L G , WANG Q , DONG C Y . Disturbance rejection control of morphing aircraft based on switched nonlinear systems[J]. Nonlinear Dynamics, 2019, 96 (2): 975- 995.
doi: 10.1007/s11071-019-04834-9
|
9 |
GIULIANI M , DIMINO I , AMEDURI S , et al. Status and perspectives of commercial aircraft morphing[J]. Biomimetics, 2022, 7 (11): 11.
|
10 |
殷明. 变体飞行器变形与飞行的协调控制问题研究[D]. 南京: 南京航空航天大学, 2016.
|
|
YIN M. Coordinated control of deformation and flight for morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
|
11 |
YAN B B , LI Y , DAI P , et al. Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft[J]. Journal of Aerospace Engineering, 2019, 32 (5): 04019058.
doi: 10.1061/(ASCE)AS.1943-5525.0001047
|
12 |
殷明, 陆宇平, 何真. 变体飞行器LPV建模与鲁棒增益调度控制[J]. 南京航空航天大学学报, 2013, 45 (2): 202- 208.
doi: 10.16356/j.1005-2615.2013.02.018
|
|
YIN M , LU Y P , HE Z . LPV modeling and robust gain schedu-ling control for morphing aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45 (2): 202- 208.
doi: 10.16356/j.1005-2615.2013.02.018
|
13 |
JIANG W L , DONG C Y , WANG Q . A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28 (6): 1640- 1649.
doi: 10.1016/j.cja.2015.10.005
|
22 |
ZHANG J. H∞ robust adaptive controller for a morphing aircraft based on SRAD and LPV model[C]//Proc. of the IEEE Chinese Control and Decision Conference, 2018: 1098-1103.
|
23 |
SHAHRADFAR E , FAKHARIAN A . Optimal controller design for DC microgrid based on state-dependent Riccati equation approach[J]. Cyber-Physical Systems, 2021, 7 (1): 41- 72.
doi: 10.1080/23335777.2020.1811381
|
24 |
CAPANNOLO A , LAVAGNA M . Adaptive state-dependent Riccati equation control for formation reconfiguration in cislunar space[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (5): 982- 989.
doi: 10.2514/1.G006540
|
25 |
BAVARSAD A , FAKHARIAN A , MENHAJ M B . Optimal sliding mode controller for an active transfemoral prosthesis using state-dependent Riccati equation approach[J]. Arabian Journal for Science and Engineering, 2020, 45 (8): 6559- 6572.
doi: 10.1007/s13369-020-04563-x
|
26 |
ROUDKENARY K A, KHALOOZADEH H, SEDIGH A K. SDRE control of non-affine systems[C]//Proc. of the 4th International Conference on Control, Instrumentation, and Automation, 2016: 239-244.
|
27 |
ROVEDA L , PIGA D . Robust state-dependent Riccati equation variable impedance control for robotic force-tracking tasks[J]. International Journal of Intelligent Robotics and Applications, 2020, 4 (4): 507- 519.
doi: 10.1007/s41315-020-00153-0
|
28 |
BATMANI Y , TAKHTABNUS M , MIRZAEI R . DC microgrid fault-tolerant control using state-dependent Riccati equation techniques[J]. Optimal Control Applications and Methods, 2022, 43 (1): 123- 137.
|
29 |
DOSSANTOS C H F , CARVALHO E A , MATINS D , et al. Virtual strategies in the kinematic and dynamical models applied to fault-tolerant strategy of underwater vehicles by using state-dependent Riccati equations[J]. International Journal of Control, 2021, 94 (10): 2741- 2757.
|
30 |
YAO J, XIN M. Suboptimal control design for differential wheeled mobile robots with θ-D technique[C]//Proc. of the 60th IEEE Conference on Decision and Control, 2021: 1444-1449.
|
31 |
GHADAMI S M . Optimization of energy for tracking of the magnetic levitation ball using the SDRE technique[J]. Journal of Applied Dynamic Systems and Control, 2021, 4 (2): 79- 84.
|