系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (12): 3852-3865.doi: 10.12305/j.issn.1001-506X.2023.12.15
• 传感器与信号处理 • 上一篇
李志汇, 唐波, 周青松, 师俊朋, 张剑云
收稿日期:
2021-09-06
出版日期:
2023-11-25
发布日期:
2023-12-05
通讯作者:
李志汇
作者简介:
李志汇(1991—), 男, 讲师, 博士, 主要研究方向为阵列信号处理、空时自适应处理、波形优化基金资助:
Zhihui LI, Bo TANG, Qingsong ZHOU, Junpeng SHI, Jianyun ZHANG
Received:
2021-09-06
Online:
2023-11-25
Published:
2023-12-05
Contact:
Zhihui LI
摘要:
随着现代电子战技术的发展, 机载雷达面临的战场环境日趋复杂。传统机载雷达往往发射固定的波形, 很难在复杂多变的电磁环境和动态时变杂波的环境下有效完成目标的检测和跟踪任务。以认知雷达和多输入多输出(multiple-input multiple-output, MIMO)雷达为代表的新体制雷达, 通过发射端灵活设计与环境相匹配的波形, 提升了机载雷达在复杂战场环境下的适应能力。对新体制机载雷达波形优化设计的研究与发展进行了综述。首先, 系统阐述了认知雷达的基本原理, 并概述了新体制机载雷达波形优化设计; 然后, 分别从先验条件和收发处理的角度对新体制机载雷达波形优化设计的研究成果进行了梳理; 最后, 针对当前机载雷达波形优化技术存在的问题, 对未来新体制机载雷达波形优化设计的发展趋势进行了展望。
中图分类号:
李志汇, 唐波, 周青松, 师俊朋, 张剑云. 新体制机载雷达波形优化设计研究综述[J]. 系统工程与电子技术, 2023, 45(12): 3852-3865.
Zhihui LI, Bo TANG, Qingsong ZHOU, Junpeng SHI, Jianyun ZHANG. Overview of waveform design methods for new system airborne radar[J]. Systems Engineering and Electronics, 2023, 45(12): 3852-3865.
1 | 吴汉平. 机载雷达导论[M]. 北京: 电子工业出版社, 2005. |
WU H P . Introduction to airborne radar[M]. Beijing: Electronic Industry Press, 2005. | |
2 | BRENNAN L E , REED I S . Theory of adaptive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 237- 252. |
3 | WARD J. Space-time adaptive processing for airborne radar[R]. London: IEE Colloquium on Space-Time Adaptive Processing, 1998. |
4 | 王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000. |
WANG Y L , PENG Y N . Space-time adaptive processing[M]. Beijing: Tsinghua University Press, 2000. | |
5 | KLEMM R . Principles of space-time adaptive processing[M]. London: IET Press, 2006. |
6 | GUERCI J R . Space-time adaptive processing for radar[M]. Norwood, MA: Artech House, 2003. |
7 |
MELVIN W L . A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19 (1): 19- 35.
doi: 10.1109/MAES.2004.1263229 |
8 | 阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42 (6): 1194- 1204. |
YANG Z C , LI X , WANG H Q . An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42 (6): 1194- 1204. | |
9 | 张良, 祝欢, 杨予昊, 等. 机载预警雷达技术及信号处理方法综述[J]. 电子与信息学报, 2016, 38 (12): 3298- 3306. |
ZHANG L , ZHU H , YANG Y H , et al. Overview on airborne early warning radar technology and signal processing methods[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 3298- 3306. | |
10 | 谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6 (6): 575- 586. |
XIE W C , DUAN K Q , WANG Y L . Space time adaptive processing technique for airborne radar: an overview of its development and prospects[J]. Journal of Radars, 2017, 6 (6): 575- 586. | |
11 | 王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4 (2): 136- 148. |
WANG T , ZHAO Y J , HU T . Overview of space-time adaptive processing for airborne MIMO radar[J]. Journal of Radars, 2015, 4 (2): 136- 148. | |
12 | 段克清, 袁华东, 许红, 等. 稀疏恢复空时自适应处理技术研究综述[J]. 电子学报, 2019, 47 (3): 748- 756. |
DUAN K Q , YUAN H D , XU H , et al. An overview of sparse recovery space-time adaptive processing technique[J]. Acta Electronica Sinica, 2019, 47 (3): 748- 756. | |
13 | 肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41 (3): 739- 750. |
XIAO B , HUO K , LIU Y X . Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41 (3): 739- 750. | |
14 | 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化[J]. 雷达学报, 2021, 10 (3): 467- 484. |
LIU F , YUAN W J , YUAN J H , et al. Radar-communication spectrum sharing and integration: overview and prospect[J]. Journal of Radars, 2021, 10 (3): 467- 484. | |
15 |
HAYKIN S . Cognitive radar: a way of the future[J]. IEEE Trans.on Signal Processing Magazine, 2006, 23 (1): 30- 40.
doi: 10.1109/MSP.2006.1593335 |
16 |
GRECO M S , GINI F , STINCO P , et al. Cognitive radars: on the road to reality[J]. IEEE Trans.on Signal Processing Magazine, 2018, 35 (4): 112- 125.
doi: 10.1109/MSP.2018.2822847 |
17 |
GUERCI J R , BARANOSKI E J . Knowledge-aided adaptive radar at DARPA: an overview[J]. IEEE Trans.on Signal Processing Magazine, 2006, 23 (1): 41- 50.
doi: 10.1109/MSP.2006.1593336 |
18 | 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8 (5): 537- 557. |
CUI G L , YU X X , YANG J , et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8 (5): 537- 557. | |
19 | LI J , STOICA P . MIMO radar signal processing[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2009. |
20 |
STOICA P , LI J . MIMO radar with colocated antennas[J]. IEEE Trans.on Signal Processing Magazine, 2007, 24 (5): 106- 114.
doi: 10.1109/MSP.2007.904812 |
21 |
HAIMOVICH A M , BLUM R S , CIMINI L J . MIMO radar with widely separated antennas[J]. IEEE Trans.on Signal Processing Magazine, 2008, 25 (1): 116- 129.
doi: 10.1109/MSP.2008.4408448 |
22 | RABIDEAU D J, PARKER P. Ubiquitous MIMO multifunction digital array radar[C]//Proc. of the 37th Asilomar Confe-rence on Signals, Systems and Computers, 2003: 1057-1064. |
23 | BLISS D W, FORSYTHE K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution[C]//Proc. of the 37th Asilomar Conference Signals, Systems, Computers, 2003: 54-59. |
24 | MECCA V F, RAMAKRISHNAN D, KROLIK J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]//Proc. of the IEEE 4th Workshop Sensor Array Multichannel Processing, 2006: 249-253. |
25 |
CHEN C Y , VAIDYANATHAN P P . MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Trans.on Signal Processing, 2008, 56 (2): 623- 634.
doi: 10.1109/TSP.2007.907917 |
26 |
XU L , LI J , STOICA P . Target detection and parameter estimation for MIMO radar systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 2008, 44 (3): 927- 939.
doi: 10.1109/TAES.2008.4655353 |
27 | GODRICH H , HAIMOVICH A M , BLIM R S . Target localization accuracy gain in MIMO radar-based systems[J]. IEEE Trans.on Signal Processing, 2010, 56 (6): 2783- 2803. |
28 |
XU J W , LIAO G S , ZHU S Q , et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Trans.on Signal Processing, 2015, 63 (13): 3396- 3410.
doi: 10.1109/TSP.2015.2422680 |
29 |
XU J W , LIAO G S , ZHU S Q , et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113, 9- 17.
doi: 10.1016/j.sigpro.2015.01.014 |
30 |
LAN L , XU J W , LIAO G S , et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (10): 11584- 11598.
doi: 10.1109/TVT.2020.3014689 |
31 | 时晨光, 董璟, 周建江, 等. 飞行器射频隐身技术研究综述[J]. 系统工程与电子技术, 2021, 43 (6): 1452- 1467. |
SHI C G , DONG J , ZHOU J J , et al. Overview of aircraft radio frequency stealth technology[J]. Systems Engineering and Electronics, 2021, 43 (6): 1452- 1467. | |
32 | WICKS M , MOKOLE E , BLUNT S , et al. Principles of waveform diversity and design[M]. Raleigh NC: SciTech Publishing, 2010. |
33 | HAYKIN S, XUE Y, DAVIDSON T N. Optimal waveform design for cognitive radar[C]//Proc. of the 42nd Asilomar Conference on Signals, Systems and Computers, 2008: 3-7. |
34 |
STOICA P , LI J , XIE Y . On probing signal design for MIMO radar[J]. IEEE Trans.on Signal Processing, 2007, 55 (8): 4151- 4161.
doi: 10.1109/TSP.2007.894398 |
35 | GINI F , DE MAIO A , PATTON L K . Waveform design and diversity for advanced radar systems[M]. London: IET Press, 2012. |
36 |
STOICA P , HE H , LI J . Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Trans.on Signal Processing, 2012, 60 (4): 1730- 1740.
doi: 10.1109/TSP.2011.2179652 |
37 |
CUI G L , LI H B , RANGASWAMY M . MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Trans.on Signal Processing, 2014, 62 (2): 343- 353.
doi: 10.1109/TSP.2013.2288086 |
38 | KARBASI S M , AUBRY A , CAROTENUTO V , et al. Know-ledge-based design of space-time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference[J]. IET Radar, Sonar & Navigation, 2015, 9 (8): 1124- 1135. |
39 |
AUBRY A , DE MAIO A , NAGHSH M M , et al. Optimizing radar waveform and Doppler filter bank via generalized fractional programming[J]. IEEE Trans.on Journal of Selected Topics in Signal Processing, 2015, 9 (8): 1387- 1399.
doi: 10.1109/JSTSP.2015.2469259 |
40 |
CHENG Z Y , HE Z S , ZAHNG S M , et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Trans.on Signal Processing, 2017, 65 (18): 4912- 4923.
doi: 10.1109/TSP.2017.2718976 |
41 |
CUI G L , YU X X , CAROTENUTO V , et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Trans.on Signal Processing, 2017, 65 (5): 1116- 1129.
doi: 10.1109/TSP.2016.2633242 |
42 |
CHENG Z Y , HE Z S , LIAO B , et al. CMIMO radar waveform design with PAPR and similarity constraints[J]. IEEE Trans.on Signal Processing, 2018, 66 (4): 968- 981.
doi: 10.1109/TSP.2017.2780052 |
43 |
CUI G L , FU Y , YU X X , et al. Robust transmitter-receiver design for extended target in signal-dependent interference[J]. Signal Processing, 2018, 147, 60- 67.
doi: 10.1016/j.sigpro.2018.01.007 |
44 |
FAN W , LIANG J L , YU G Y , et al. MIMO radar waveform design for quasi-equiripple transmit beampattern synthesis via weighted lp minimization[J]. IEEE Trans.on Signal Processing, 2019, 67 (13): 3397- 3411.
doi: 10.1109/TSP.2019.2917871 |
45 |
YU X X , CUI G L , YANG J , et al. MIMO radar transmit-receive design for moving target detection in signal-dependent clutter[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (1): 522- 536.
doi: 10.1109/TVT.2019.2951399 |
46 |
DE MAIO A , NICOLA S D , HUANG Y W , et al. Code design for radar STAP via optimization theory[J]. IEEE Trans.on Signal Processing, 2010, 58 (2): 679- 694.
doi: 10.1109/TSP.2009.2032993 |
47 |
WANG H Y , LIAO G S , LI J , et al. Waveform optimization for MIMO-STAP to improve the detection performance[J]. Signal Processing, 2011, 91, 2690- 2696.
doi: 10.1016/j.sigpro.2011.06.005 |
48 |
TANG B , LI J , ZHANG Y , et al. Design of MIMO radar waveform covariance matrix for clutter and jamming suppression based on space-time adaptive processing[J]. Signal Processing, 2016, 121, 60- 69.
doi: 10.1016/j.sigpro.2015.10.033 |
49 | TANG B, ZHANG Y, TANG J. Computationally efficient waveform optimization for MIMO radar space time adaptive processing[C]//Proc. of the CIE International Conference on Radar, 2016. |
50 |
SEN S . PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (6): 3658- 3669.
doi: 10.1109/TGRS.2013.2274593 |
51 |
WANG H Y . Multi-input multi-output orthogonal frequency division multiplexing radar waveform design for improving the detection performance of space-time adaptive processing[J]. Journal of Applied Remote Sensing, 2017, 11 (2): 025013.
doi: 10.1117/1.JRS.11.025013 |
52 | 施君南, 纠博, 刘宏伟, 等. 一种基于先验信息的机载MIMO雷达发射方向图设计方法[J]. 电子与信息学报, 2015, 37 (5): 1038- 1043. |
SHI J N , JIU B , LIU H W , et al. A beampattern design method for airborne MIMO radar based on prior information[J]. Journal of Electronics & Information Technology, 2015, 37 (5): 1038- 1043. | |
53 |
SHI J N , JIU B , LIU H W , et al. Transmit design for airborne MIMO radar based on prior information[J]. Signal Processing, 2016, 128, 521- 530.
doi: 10.1016/j.sigpro.2016.05.003 |
54 |
SUN G H , HE Z S , TONG J , et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (4): 2909- 2921.
doi: 10.1109/TGRS.2020.3008320 |
55 |
TANG B , TANG J . Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Trans.on Signal Processing, 2016, 64 (18): 4707- 4722.
doi: 10.1109/TSP.2016.2569431 |
56 |
SHI S N , HE Z S , WANG Z Y . Joint design of transmit waveforms and receive filter for MIMO-STAP airborne radar[J]. Circuits, Systems, and Signal Processing, 2020, 39, 1489- 1508.
doi: 10.1007/s00034-019-01215-w |
57 |
LI J , LIAO G S , HUANG Y , et al. Manifold optimization for joint design of MIMO-STAP radars[J]. IEEE Trans.on Signal Processing Letters, 2020, 27, 1969- 1973.
doi: 10.1109/LSP.2020.3022239 |
58 |
LI J , LIAO G S , HUANG Y , et al. Riemannian geometric optimization methods for joint design of transmit sequence and receive filter on MIMO radar[J]. IEEE Trans.on Signal Processing, 2020, 68, 5602- 5616.
doi: 10.1109/TSP.2020.3022821 |
59 |
SETLUR P , RANGASWAMY M . Waveform design for radar STAP in signal dependent interference[J]. IEEE Trans.on Signal Processing, 2016, 64 (1): 19- 34.
doi: 10.1109/TSP.2015.2451114 |
60 |
O'ROURKE S M , SETLUR P , RANGASWAMY M , et al. Relaxed biquadratic optimization for joint filter-signal design in signal-dependent STAP[J]. IEEE Trans.on Signal Processing, 2018, 66 (5): 1300- 1315.
doi: 10.1109/TSP.2017.2775592 |
61 |
O'ROURKE S M , SETLUR P , RANGASWAMY M , et al. Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP[J]. IEEE Trans.on Signal Processing, 2020, 68, 1744- 1759.
doi: 10.1109/TSP.2020.2977271 |
62 |
TANG B , TUCH J , STOICA P . Polyphase waveform design for MIMO radar space time adaptive processing[J]. IEEE Trans.on Signal Processing, 2020, 68, 2143- 2154.
doi: 10.1109/TSP.2020.2983833 |
63 |
YU X X , CUI G L , KONG L J , et al. Constrained waveform design for colocated MIMO radar with uncertain steering matrices[J]. IEEE Trans.on Aerospace and Electronics Systems, 2019, 55 (1): 356- 370.
doi: 10.1109/TAES.2018.2852200 |
64 | 童日武, 张剑云, 周青松. 峰均比约束下机载MIMO雷达频谱共存波形设计[J]. 空军工程大学学报(自然科学版), 2020, 21 (1): 44- 51. |
TONG R W , ZHANG J Y , ZHOU Q S . Airborne MIMO radar waveform design for spectral coexistence with PAR constraint[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21 (1): 44- 51. | |
65 | WANG H Y , LIAO G S , LI J , et al. Robust waveform design for MIMO-STAP to improve the worst-case detection performance[J]. EURASIP Journal on Advances in Signal Processing, 2013, 1 (52): 7781387. |
66 |
WANG H Y , CHENG Q , PEI B N . Robust MIMO radar waveform design to improve the worst-case detection perfor-mance of STAP[J]. IEICE Trans.on Communications, 2018, E101-B (5): 1175- 1182.
doi: 10.1587/transcom.2017EBP3092 |
67 | WANG H Y . Robust waveform design for MIMO-OFDM based STAP in the presence of target uncertainty[J]. IET Radar, Sonar & Navigation, 2018, 12, 1021- 1027. |
68 | WANG X, WANG H Y, PEI B N. Robust waveform design for MIMO-OFDM-STAP with imperfect clutter prior know-ledge[C]//Proc. of the International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016. DOI: 10.1109/WiSPNET.2016.7566462. |
69 | 刘玉春, 王洪雁. 提升空时自适应检测性能的多输入多输出雷达稳健波形设计[J]. 西安交通大学学报, 2018, 52 (8): 124- 131. |
LIU Y C , WANG H Y . A robust waveform design of MIMO radar for improving detection performance of space-time adaptive processing[J]. Journal of Xi'an Jiaotong University, 2018, 52 (8): 124- 131. | |
70 | 姚遥, 周吉生, 李琼, 等. 非确知先验信息条件下MIMO雷达波形设计[J]. 火力与指挥控制, 2020, 45 (12): 57- 63. |
YAO Y , ZHOU J S , LI Q , et al. MIMO radar waveform design with imperfect prior information[J]. Fire Control & Command Control, 2020, 45 (12): 57- 63. | |
71 | WANG Y X , LI W , SUN Q L , et al. Robust joint design of transmit waveform and receive filter for MIMO radar space-time adaptive processing with signal-dependent interferences[J]. IET Radar, Sonar & Navigation, 2017, 11 (8): 1321- 1332. |
72 | 童日武, 张剑云, 周青松. 机载MIMO雷达发射波形和接收滤波器组联合稳健设计方法[J]. 探测与控制学报, 2020, 42 (3): 35- 43. |
TONG R W , ZHANG J Y , ZHOU Q S . Joint robust design method of transmit waveform and receive filter bank for airborne MIMO radar[J]. Journal of detection & control, 2020, 42 (3): 35- 43. | |
73 | ZHOU Q S , LI Z H , SHI J P , et al. Robust cognitive transmit waveform and receive filter for airborne MIMO radar in signal-dependent clutter environment[J]. Digital Signal Processing, 2020, 101, 102709. |
74 | 王洪雁, 乔惠娇, 裴炳南. MIMO雷达空时编码和接收权联合稳健设计[J]. 西安电子科技大学学报, 2019, 46 (2): 69- 77. |
WANG H Y , QIAO H J , PEI B N . Joint robust design of space-time code and receive filter for multiple-input multiple-output radar[J]. Journal of Xidian University, 2019, 46 (2): 69- 77. | |
75 | XU J W , ZHU S Q , LIAO G S . Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Trans.on Journal of Selected Topics in Signal Processing, 2015, 9 (8): 1620- 1631. |
76 | XU J W , LIAO G S , SO H C . Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (9): 5352- 5364. |
77 | XU J W , LIAO G S , ZHANG Y H , et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Trans.on Journal of Selected Topics in Signal Processing, 2017, 11 (2): 309- 320. |
78 | WANG Y Z , ZHU S Q . Range ambiguous clutter suppression for FDA-MIMO forward looking airborne radar based on main lobe correction[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (3): 2032- 2046. |
79 | HE X P , LIAO G S , ZHU S Q , et al. An adaptive coding-angle-Doppler clutter suppression approach with extended azimuth phase coding array[J]. Signal Processing, 2020, 169, 107377. |
80 | XU J W , ZHANG Y H , LIAO G S , et al. Resolving range ambiguity via multiple-input multiple-output radar with element-pulse coding[J]. IEEE Trans.on Signal Processing, 2020, 68, 2770- 2783. |
81 | 兰岚, 许京伟, 朱圣棋, 等. 波形分集阵列雷达抗干扰进展[J]. 系统工程与电子技术, 2021, 43 (6): 1438- 1451. |
LAN L , XU J W , ZHU S Q , et al. Advances in anti-jamming using waveform diverse array radar[J]. Systems Engineering and Electronics, 2021, 43 (6): 1438- 1451. | |
82 | XIE L , HE Z S , TONG J , et al. Transmitter polarization optimization for space-time adaptive processing with diversely pola-rized antenna array[J]. Signal Processing, 2020, 169, 107401. |
83 | AUBRY A , DE MAIO A , PIEZZO M , et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 1138- 1152. |
84 | HASSANIEN A , AMIN M G , ABOUTANIOS E , et al. Dual-function radar communication systems[J]. IEEE Trans.on Signal Processing Magazine, 2019, 36 (5): 115- 126. |
85 | CHENG Z Y , LIAO B , HE Z S , et al. Spectrally compatible waveform design for MIMO radar in the presence of multiple targets[J]. IEEE Trans.on Signal Processing, 2018, 66 (13): 3543- 3555. |
86 | QIAN J H , LOPS M , ZHENG L , et al. Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Trans.on Signal Processing, 2018, 66 (13): 3504- 3519. |
87 | RIHAN M , HUANG L . Optimum co-design of spectrum sharing between MIMO radar and MIMO communication systems: an interference alignment approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (12): 11667- 11680. |
88 | TANG B , LI J . Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Trans.on Signal Processing, 2019, 67 (3): 821- 834. |
89 | YANG Z C , LI X , WNAG H Q , et al. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Trans.on Geoscience and Remote Sensing Letters, 2013, 10 (5): 1214- 1218. |
90 | YANG Z C , LI X , WNAG H Q , et al. Adaptive clutter suppression based on iterative adaptive approach for airborne radar[J]. Signal Processing, 2013, 93 (12): 3567- 3577. |
91 | WNAG Z T , XIE W C , DUAN K Q , et al. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar[J]. Signal Processing, 2017, 130, 159- 168. |
92 | LI Z H , ZHANG Y S , HE X Y , et al. Low complexity off-grid STAP algorithm based on local search clutter subspace estimation[J]. IEEE Trans.on Geoscience and Remote Sensing Letters, 2018, 15 (12): 1862- 1866. |
93 | HU H , SOLTANLIAN M , STOICA P , et al. Locating the few: sparsity-aware waveform design for active radar[J]. IEEE Trans.on Signal Processing, 2017, 65, 651- 662. |
[1] | 汪萌, 诸兵. 不确定性建模在2D和3D目标检测中的应用[J]. 系统工程与电子技术, 2023, 45(8): 2370-2376. |
[2] | 郝宇航, 蒋威, 王增福, 兰华, 雍婷, 潘泉. 分布式MIMO体制天波超视距雷达仿真系统[J]. 系统工程与电子技术, 2023, 45(7): 1981-1989. |
[3] | 成倩, 李佳, 杜娟. 基于YOLOv5的光学遥感图像舰船目标检测算法[J]. 系统工程与电子技术, 2023, 45(5): 1270-1276. |
[4] | 何金阳, 程子扬, 李绽蕾, 何子述, 沙明辉. 低多普勒敏感的抗间歇采样转发干扰波形设计方法[J]. 系统工程与电子技术, 2023, 45(5): 1333-1341. |
[5] | 朱晶晶, 朱圣棋, 廖桂生, 许京伟, 兰岚, 曾操. 相控阵和频率分集阵双模式雷达联合目标检测[J]. 系统工程与电子技术, 2023, 45(5): 1342-1350. |
[6] | 杨宇超, 方明, 赵晨帆, 方刚. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45(5): 1359-1370. |
[7] | 张冬冬, 王春平, 付强. 基于特征增强网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2023, 45(4): 1032-1039. |
[8] | 孟自强, 高伟, 李晓明. 机载雷达地面静止目标二维检测算法[J]. 系统工程与电子技术, 2023, 45(4): 1040-1048. |
[9] | 张育豪, 朱圣棋, 曾操, 崔森, 石琦剑. EPC-MIMO雷达主瓣距离欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2023, 45(3): 690-698. |
[10] | 王安安, 谢文冲, 陈威, 熊元燚, 王永良. 双基地机载雷达杂波和主瓣压制干扰抑制方法[J]. 系统工程与电子技术, 2023, 45(3): 699-707. |
[11] | 张昀普, 单甘霖, 黄燕, 付强. 考虑盲区的多移动传感器地面目标检测跟踪调度方法[J]. 系统工程与电子技术, 2023, 45(2): 453-464. |
[12] | 贺翥祯, 李敏, 苟瑶, 杨爱涛. 改进YOLOv5的合成孔径雷达图像舰船目标检测方法[J]. 系统工程与电子技术, 2023, 45(12): 3743-3753. |
[13] | 陈任飞, 彭勇, 李忠文. 基于持续无监督域适应策略的水面漂浮物目标检测方法[J]. 系统工程与电子技术, 2023, 45(11): 3391-3401. |
[14] | 连红飞, 龙佳敏, 胡雪瑶, 蒋彦雯, 李东升, 范红旗. 汽车雷达多域联合调制波形[J]. 系统工程与电子技术, 2023, 45(11): 3402-3410. |
[15] | 周剑雄, 朱永锋, 陈冀, 吴宏铭, 吴堃, 张永杰. SAR图像辅助的雷达目标距离像检测识别[J]. 系统工程与电子技术, 2023, 45(11): 3428-3436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||