1 |
全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43 (11): 3216- 3136.
doi: 10.12305/j.issn.1001-506X.2021.11.11
|
|
QUAN Y H , FANG W , SHA M H , et al. Present situation and prospects of frequency agility radar waveform counter measures[J]. Systems Engineering and Electronics, 2021, 43 (11): 3126- 3136.
doi: 10.12305/j.issn.1001-506X.2021.11.11
|
2 |
杨健, 刘渝, 狄慧. 捷变频雷达信号分选及基准频率估计算法研究[J]. 兵工学报, 2013, 34 (12): 1507- 1512.
|
|
YANG J , LIU Y , DI H . Research on the algorithm of signal sorting and reference frequency estimation of frequency agility radar[J]. Acta Armamentarii, 2013, 34 (12): 1507- 1512.
|
3 |
姚家伦, 黄高明, 田威. 基于差分进化算法的捷变频雷达频率预测方法[J]. 电光与控制, 2019, 26 (5): 45- 48.
|
|
YAO J L , HUANG G M , TIAN W . A differential evolution based frequency prediction method for frequency-agile radar[J]. Electronics Optics & Control, 2019, 26 (5): 44- 48.
|
4 |
王勇. 频率捷变雷达抗海杂波性能分析[J]. 战术导弹技术, 2016, (4): 98- 103.
|
|
WANG Y . Sea clutter resistance performance analysis of FAR[J]. Tactical Missile Technology, 2016, (4): 98- 103.
|
5 |
周志增, 刘洪亮, 高凤华, 等. 频率捷变对改善低空目标探测的分析与研究[J]. 现代防御技术, 2017, 45 (1): 120- 125.
|
|
ZHOU Z Z , LIU H L , GAO F H , et al. Analysis and study on improving radar detection performance of low altitude target with frequency agility[J]. Modern Defence Technology, 2017, 45 (1): 120- 125.
|
6 |
QUAN Y H , LI Y C , WU Y J , et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87 (9): 094703.
doi: 10.1063/1.4962700
|
7 |
QUAN Y H , WU Y J , LI Y C , et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12 (3): 348- 352.
|
8 |
KNILL C , ROOS F , SCHWEIZER B , et al. Radom multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29 (4): 300- 302.
doi: 10.1109/LMWC.2019.2901405
|
9 |
张轶芃, 王峰. 跳频与重频二维抖动雷达信号的稀疏重构技术研究[J]. 中国电子科技研究院学报, 2021, 16 (9): 892- 899.
|
|
ZHANG Y P , WANG F . Research on sparse reconstruction of frequency hoppling interval and repetition frequency two-dimensional jitter radar signal[J]. Journal of CAEIT, 2021, 16 (9): 892- 899.
|
10 |
全英汇, 高霞, 沙明辉, 等. 基于期望最大化算法的捷变频联合正交频分复用雷达高速多目标参数估计[J]. 电子与信息学报, 2020, 42 (7): 1612- 1617.
|
|
QUAN Y H , GAO X , SHA M H , et al. High speed multi-target parameter estimation for FA-OFDM radar based on expectation maximization algorithm[J]. Journal of Electronics & Information Technology, 2020, 42 (7): 1612- 1617.
|
11 |
丁逊, 张劲东, 王娜, 等. 基于相参积累的捷变频雷达系统相位误差估计与稀疏场景重构算法[J]. 系统工程与电子技术, 2021, 43 (6): 1515- 1523.
|
|
DING X , ZHANG J D , WANG N , et al. System phase error estimation and sparse scene reconstruction algorithm of frequency agile radar based on coherent accumulation[J]. Systems Engineering and Electronics, 2021, 43 (6): 1515- 1523.
|
12 |
MARQUES E C , MACIEL N , NAVINER L A B , et al. A review of sparse recovery algorithms[J]. IEEE Access, 2018, 7, 1300- 1322.
|
13 |
黄天耀, 李宇涵, 王磊, 等. 相参频率捷变雷达目标稀疏重建性能边界综述[J]. 系统工程与电子技术, 2021, 43 (7): 1729- 1736.
|
|
HUANG T Y , LI Y H , WANG L , et al. Review of performance bounds on sparse target recovery using coherent frequency agile radar[J]. Systems Engineering and Electronics, 2021, 43 (7): 1729- 1736.
|
14 |
潘嘉蒙. 基于波形参数捷变雷达的非合作双基地雷达信号处理关键技术研究[D]. 长沙: 国防科技大学, 2020.
|
|
PAN J M. Research on key technology of passive bistatic radar based on waveform parameters agile radar signal processing[D]. Changsha: National University of Defense Technology, 2020.
|
15 |
TIAN R Q , LIN C Y , BAO Q L , et al. Coherent integration method of high-speed target for frequency agile radar[J]. IEEE Access, 2018, 6, 18984- 18993.
|
16 |
HUANG P H , DONG S S , LIU X Z , et al. A coherent integration method for moving target detection using frequency agile radar[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (2): 206- 210.
|
17 |
PERRY R P , DIPIETRO R C , FANTE R L . SAR imaging of moving targets[J]. IEEE Trans.on Aerospace and Electronic Systems, 1999, 35 (1): 188- 200.
|
18 |
张亮, 张翔宇, 王国宏. KT实现方法研究[J]. 电子学报, 2022, 50 (5): 1218- 1226.
|
|
ZHANG L , ZHANG X Y , WANG G H . Research on KT transform implementation methods[J]. Acta Electronica Sinica, 2022, 50 (5): 1218- 1226.
|
19 |
户盼鹤, 林财永, 鲍庆龙, 等. 基于非合作捷变频雷达的微弱目标检测算法[J]. 雷达科学与技术, 2015, 13 (5): 473- 478.
|
|
HU P H , LIN C Y , BAO Q L , et al. A novel weak target detection method based on non-cooperative frequency agile radar[J]. Radar Science and Technology, 2015, 13 (5): 473- 478.
|
20 |
王文杰. 基于CS的捷变频雷达目标信息反演技术[D]. 西安: 西安电子科技大学, 2021.
|
|
WANG W J. Target information retrieval technology of frequency agile radar based on compressed sensing[D]. Xi'an: Xidian University, 2021.
|
21 |
万福海, 许京伟, 张振荣. FDA-MIMO雷达稳健抗主瓣距离欺骗式干扰技术[J]. 系统工程与电子技术, 2022, 44 (9): 2809- 2816.
|
|
WAN F H , XU J W , ZHANG Z R . Robust anti-main lobe range deceptive jamming technology with FDA-MIMO radar[J]. Systems Engineering and Electronics, 2022, 44 (9): 2809- 2816.
|
22 |
PARKER J A , KENYON R V , TROXEL D E . Comparison of interpolating methods for image resampling[J]. IEEE Trans.on Medical Imaging, 1983, 2 (1): 31- 39.
|
23 |
CULHA O , TANIK Y . Low complexity Keystone transform and radon Fourier transform utilizing Chirp-Z transform[J]. IEEE Access, 2020, 8, 105535- 105541.
|
24 |
LI M . Example-based on learning using heuristic orthogonal matching pursuit teaching mechanism with auxiliary coefficient representation for the problem of defencing and its affiliated applications[J]. Applied Intelligence, 2018, 48 (9): 2884- 2893.
|