系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (12): 3828-3835.doi: 10.12305/j.issn.1001-506X.2023.12.12

• 传感器与信号处理 • 上一篇    

随机样本选择的合成孔径雷达距离空变相位梯度自聚焦算法

孟智超1, 张磊1,*, 卢景月2, 李军3   

  1. 1. 中山大学深圳电子与通信工程学院, 深圳 518107
    2. 西安电子科技大学计算机科学与技术学院, 陕西 西安 710071
    3. 北京无线电测量研究所, 北京 100854
  • 收稿日期:2022-06-06 出版日期:2023-11-25 发布日期:2023-12-05
  • 通讯作者: 张磊
  • 作者简介:孟智超(1997—), 男, 博士研究生, 主要研究方向为合成孔径雷达成像
    张磊(1984—), 男, 教授, 博士, 主要研究方向为雷达成像和目标识别
    卢景月(1994—), 男, 讲师, 博士, 主要研究方向为合成孔径雷达成像
    李军(1982—), 男, 研究员, 博士, 主要研究方向为SAR系统总体及数据处理技术

A range-dependent phase gradient autofocus algorithm integrated stochastic sample selection for SAR imaging

Zhichao MENG1, Lei ZHANG1,*, Jingyue LU2, Jun LI3   

  1. 1. School of Electronics and Communication Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
    2. School of Computer Science and Technology, Xidian University, Xi'an 710071, China
    3. Beijing Institute of Radio Measurement, Beijing 100854, China
  • Received:2022-06-06 Online:2023-11-25 Published:2023-12-05
  • Contact: Lei ZHANG

摘要:

针对距离依赖的相位梯度自聚焦(phase gradient autofocus, PGA)算法中样本选择的问题, 本文提出了一种新的基于随机样本选择的距离依赖PGA(range-dependent PGA, RDPGA)算法。不同于传统算法利用固定门限对特显点样本进行硬剔除的选择方式, 该算法利用样本的信杂比(signal to clutter ratio, SCR)构造了样本选择概率密度函数, 在每次PGA迭代估计过程中, 利用该概率密度函数对样本进行随机选择。随机样本选择方法不仅通过增加距离依赖样本的丰富性保证了RDPGA的估计精度, 同时还保证了高质量样本在模型参数估计中提供较高贡献, 在保持高效性的同时进一步提升了算法的稳健性。实测数据处理结果表明所提算法具有较高的估计精度和稳健性。

关键词: 自聚焦, 相位梯度自聚焦, 随机样本选择

Abstract:

Aiming at the sample selection method in the range-dependent phase gradient autofocus (PGA) algorithm, a novel range-dependent PGA (RDPGA) algorithm based on stochastic sample selection is proposed in this paper. Different from the traditional algorithms, in which a fixed threshold is utilized to exclude a part of characteristic point samples, the proposed algorithm uses the samples' signal to clutter ratio (SCR) to construct a probability density function for sample selection. Samples are stochastically selected in each iteration according to the probability density function. Stochastic sample selection ensures the diversity of range cell samples, improving the estimation accuracy of RDPGA. In addition, the probability distribution ensures the high contribution of high-quality samples in the estimation of model parameters. It improves the robustness of convergence while promising a high efficiency. The actual measured data processing results show that the proposed algorithm has high estimation accuracy and robustness.

Key words: autofocus, phase gradient autofocus (PGA), stochastic sample selection

中图分类号: