系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (12): 3715-3725.doi: 10.12305/j.issn.1001-506X.2023.12.01
• 电子技术 •
冯伟1,*, 龙以君1, 全英汇1, 邢孟道2
收稿日期:
2022-07-06
出版日期:
2023-11-25
发布日期:
2023-12-05
通讯作者:
冯伟
作者简介:
冯伟 (1985—), 女, 副教授, 博士, 主要研究方向人工智能和遥感图像处理基金资助:
Wei FENG1,*, Yijun LONG1, Yinghui QUAN1, Mengdao XING2
Received:
2022-07-06
Online:
2023-11-25
Published:
2023-12-05
Contact:
Wei FENG
摘要:
在遥感图像分类实际应用中, 深度学习经常面临高光谱数据有效标签不完备、样本多类不平衡和数据分布随时空动态变化等问题, 难以发挥优势。基于上述问题, 提出一个基于人工少数类过采样方法(synthetic minority oversampling technique, SMOTE)和深度迁移卷积神经网络的土地覆盖分类算法。所提算法创新性地采用深度迁移学习, 使算法能够学习不同时空相同地物的相似性, 并利用SMOTE方法对学习数据进行类分布空间优化平衡, 从而解决目标域数据不足和数据类不平衡问题。两组公开的高光谱遥感图像被用来验证所提算法的有效性。实验结果表明, 相比传统的深度学习, 所提算法能够更有效地解决数据不足和数据类不平衡问题提高分类精度。
中图分类号:
冯伟, 龙以君, 全英汇, 邢孟道. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45(12): 3715-3725.
Wei FENG, Yijun LONG, Yinghui QUAN, Mengdao XING. Multi-class imbalance remote sensing image classification based on SMOTE and deep transfer convolutional neural network[J]. Systems Engineering and Electronics, 2023, 45(12): 3715-3725.
表1
数据集信息"
序号 | Pavia组 | Salinas组 | |||||||
地物类别 | 源域 | 目标域训练集 | 目标域测试集 | 地物类别 | 源域 | 目标域训练集 | 目标域测试集 | ||
1 | 沥青质 | 148 | 331 | 6 300 | 西蓝花草1 | 91 | 136 | 391 | |
2 | 草地 | 2 185 | 948 | 17 701 | 西蓝花草2 | 157 | 0 | 0 | |
3 | 树木 | 367 | 142 | 2 922 | 休耕地 | 98 | 0 | 0 | |
4 | 裸地 | 136 | 239 | 4 790 | 粗糙犁地 | 69 | 0 | 0 | |
5 | 沥青 | 323 | 69 | 1 261 | 光滑休耕地 | 145 | 0 | 0 | |
6 | 阴影 | 353 | 53 | 894 | 残梗地 | 226 | 0 | 0 | |
7 | 芹菜 | 167 | 0 | 0 | |||||
8 | 生葡萄 | 577 | 0 | 0 | |||||
9 | Vinyard 开发土壤 | 327 | 0 | 0 | |||||
10 | 衰老玉米草 | 156 | 420 | 923 | |||||
11 | 长叶莴苣4 | 54 | 167 | 449 | |||||
12 | 长叶莴苣5 | 111 | 446 | 1 079 | |||||
13 | 长叶莴苣6 | 45 | 208 | 467 | |||||
14 | 长叶莴苣7 | 62 | 227 | 552 | |||||
15 | Vinyard 未开发土壤 | 343 | 0 | 0 | |||||
16 | Vinyard 垂直格土壤 | 78 | 0 | 0 | |||||
总数 | 3 512 | 1 782 | 33 868 | 2 706 | 1 604 | 3 861 |
表3
Salinas组经SMOTE处理后的数据集在ResNet34、ResNet50和ResNet101分别以MMD和CORAL为度量准则的深度迁移学习分类结果"
实验序号及度量准则 | STR34 | STR50 | STR101 | |||||
MMD | CORAL | MMD | CORAL | MMD | CORAL | |||
1/% | 45.94±31.33 | 45.63±29.39 | 28.44±17.30 | 34.69±25.43 | 30.00±30.56 | 24.38±20.27 | ||
2/% | 83.59±13.86 | 90.00±8.08 | 85.94±9.23 | 85.78±6.97 | 66.25±20.52 | 66.88±15.86 | ||
3/% | 91.88±9.08 | 91.25±6.34 | 92.03±3.72 | 89.06±7.86 | 88.59±19.82 | 88.13±6.72 | ||
4/% | 93.44±5.25 | 96.56±2.83 | 93.44±3.95 | 92.03±6.81 | 95.00±10.41 | 94.53±2.36 | ||
5/% | 96.56±3.95 | 95.16±4.80 | 97.81±2.11 | 95.94±2.23 | 96.25±5.29 | 94.22±4.89 | ||
6/% | 93.91±6.14 | 97.03±1.87 | 96.72±2.14 | 95.78±3.69 | 95.31±9.26 | 96.41±2.86 | ||
7/% | 97.97±2.34 | 96.09±4.05 | 95.00±3.95 | 95.16±2.90 | 94.84±5.19 | 95.16±2.14 | ||
8/% | 94.38±4.73 | 95.94±2.47 | 97.66±2.36 | 97.19±2.53 | 95.31±4.12 | 92.81±4.84 | ||
9/% | 97.66±2.78 | 97.66±2.24 | 95.63±4.93 | 94.53±5.67 | 95.78±4.82 | 96.56±2.93 | ||
10/% | 96.72±4.80 | 97.97±1.96 | 97.66±2.24 | 93.75±3.38 | 97.19±2.62 | 95.1±62.70 | ||
OA/% | 89.02±18.78 | 90.33±18.02 | 88.03±21.30 | 87.39±20.07 | 85.45±22.76 | 84.42±23.41 | ||
AA/% | 94.63±10.01 | 95.88±8.39 | 92.79±11.79 | 93.85±11.91 | 91.47±11.66 | 90.98±13.17 | ||
Kappa/×100 | 87.24±20.22 | 88.53±19.47 | 86.12±22.56 | 85.26±21.19 | 83.09±24.47 | 81.76±25.19 |
表4
Pavia组经SMOTE处理后的数据集在ResNet34、ResNet50和ResNet101分别以MMD和CORAL为度量准则的深度迁移学习分类结果"
实验序号及度量准则 | STR34 | STR50 | STR101 | |||||
MMD | CORAL | MMD | CORAL | MMD | CORAL | |||
1/% | 64.97±5.38 | 62.74±10.82 | 53.40±20.69 | 38.82±26.12 | 42.40±14.88 | 38.66±16.07 | ||
2/% | 73.51±20.53 | 75.57±7.08 | 62.55±9.11 | 67.10±12.31 | 62.16±8.32 | 62.85±9.77 | ||
3/% | 84.61±6.86 | 82.17±13.98 | 76.61±3.48 | 78.12±3.10 | 76.67±1.87 | 76.85±4.88 | ||
4/% | 80.04±15.56 | 88.37±3.68 | 82.46±5.72 | 83.45±6.62 | 77.50±5.59 | 78.43±5.92 | ||
5/% | 91.92±3.71 | 90.65±9.24 | 86.33±5.86 | 88.72±3.87 | 75.24±8.94 | 73.89±10.91 | ||
6/% | 92.54±2.73 | 92.19±3.17 | 90.06±2.83 | 86.68±6.49 | 83.51±1.80 | 83.93±1.78 | ||
7/% | 93.76±1.18 | 91.51±6.24 | 92.04±0.38 | 90.89±1.99 | 85.63±1.50 | 84.93±3.00 | ||
8/% | 93.86±0.87 | 88.44±10.92 | 92.77±1.80 | 91.65±1.67 | 87.40±1.12 | 87.51±0.91 | ||
9/% | 93.85±1.56 | 93.12±1.40 | 91.03±2.37 | 91.63±4.10 | 88.23±0.78 | 88.14±1.38 | ||
OA/% | 85.45±13.09 | 84.97±12.22 | 80.81±15.38 | 79.67±18.95 | 75.42±15.37 | 75.02±16.61 | ||
AA/% | 81.87±12.26 | 84.25±11.73 | 81.85±12.79 | 76.65±11.85 | 76.79±14.21 | 74.96±11.84 | ||
Kappa/×100 | 79.43±16.97 | 78.87±15.91 | 73.73±18.31 | 72.56±21.74 | 66.70±17.60 | 66.65±18.36 |
表5
数据集在ResNet34、ResNet50和ResNet101分类结果"
实验序号及度量准则 | Pavia组 | Salinas组 | |||||
ResNet34 | ResNet50 | ResNet101 | ResNet34 | ResNet50 | ResNet101 | ||
1/% | 52.34±13.52 | 31.96±25.76 | 38.92±21.61 | 46.66±13.27 | 20.55±22.62 | 12.55±13.27 | |
2/% | 68.77±11.27 | 67.56±11.91 | 58.79±7.72 | 83.49±19.88 | 76.39±9.96 | 64.56±19.88 | |
3/% | 67.48±8.00 | 78.08±6.34 | 78.04±7.11 | 92.51±4.00 | 87.62±6.34 | 90.33±4.00 | |
4/% | 62.93±3.03 | 77.50±7.84 | 79.01±6.46 | 94.53±3.06 | 92.69±4.63 | 94.40±3.06 | |
5/% | 61.78±0.69 | 88.03±2.97 | 81.35±2.35 | 95.42±2.98 | 93.55±4.15 | 94.52±2.98 | |
6/% | 78.97±3.61 | 86.50±9.27 | 94.32±4.46 | 96.00±4.09 | 91.78±5.54 | 94.39±4.09 | |
7/% | 87.98±2.72 | 90.17±2.42 | 86.17±1.57 | 96.40±4.29 | 92.52±11.02 | 94.58±4.29 | |
8/% | 90.65±3.33 | 92.09±1.19 | 86.67±2.50 | 97.88±2.05 | 92.05±11.30 | 97.15±2.05 | |
9/% | 92.70±0.82 | 87.79±4.35 | 87.00±5.30 | 96.47±2.64 | 94.39±3.31 | 96.89±2.64 | |
10/% | - | - | - | 96.47±2.14 | 95.33±3.37 | 95.84±2.14 | |
OA/% | 73.73±12.32 | 77.74±20.41 | 75.59±17.40 | 89.58±26.65 | 83.69±23.76 | 83.52±26.65 | |
AA/% | 57.49±12.26 | 78.59±13.46 | 76.05±13.63 | 93.33±11.79 | 88.20±12.91 | 85.76±11.79 | |
Kappa/×100 | 59.05±16.02 | 70.15±22.95 | 67.19±19.36 | 87.70±27.57 | 81.22±24.94 | 81.63±27.57 |
表6
数据集在MRAN(r1+r2)和MRAN的分类结果"
实验序号及度量准则 | Salinas组 | Pavia组 | |||
MRAN (r1+r2) | MRAN | MRAN (r1+r2) | MRAN | ||
1/% | 70.82±19.03 | 62.29±19.17 | 55.17±5.57 | 56.20±6.33 | |
2/% | 86.76±4.19 | 72.37±6.99 | 72.78±0.81 | 75.58±2.56 | |
3/% | 88.55±2.15 | 69.91±5.66 | 77.43±4.61 | 73.91±3.85 | |
4/% | 90.14±2.59 | 69.16±4.09 | 81.08±3.47 | 80.95±3.60 | |
5/% | 92.26±1.19 | 73.35±2.43 | 86.10±0.60 | 84.62±1.13 | |
6/% | 91.47±1.96 | 73.61±4.62 | 86.84±0.97 | 86.47±1.03 | |
7/% | 92.38±1.61 | 75.28±6.40 | 88.45±1.11 | 87.25±1.07 | |
8/% | 92.70±0.89 | 71.14±7.16 | 89.12±1.42 | 88.56±0.95 | |
9/% | 93.45±1.44 | 72.35±8.61 | 90.91±0.81 | 88.94±1.38 | |
10/% | 94.20±1.40 | 74.91±4.67 | - | - | |
OA/% | 89.27±8.92 | 71.44±8.65 | 80.88±11.09 | 80.28±10.41 | |
AA/% | 95.38±4.00 | 89.06±4.86 | 81.68±10.67 | 80.06±9.48 | |
Kappa/×100 | 87.01±9.97 | 66.33±9.54 | 73.09±14.06 | 72.25±13 |
1 | 吴田军, 骆剑承, 夏列钢, 等. 迁移学习支持下的遥感影像对象级分类样本自动选择方法[J]. 测绘通报, 2014, 43 (9): 908- 916. |
WU T J , LUO J C , XIA L G , et al. An automatic sample collection method for object-oriented classification of remotely sensed imageries based on transfer learning[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43 (9): 908- 916. | |
2 | ZHANG X R, SONG Q, ZHENG Y G, et al. Classification of imbalanced hyperspectral imagery data using support vector sampling[C]//Proc. of the IEEE Geoscience and Remote Sensing Symposium, 2014: 2870-2873. |
3 | HERNÁNDEZ-ESPINOSA C, FERNÁNDEZ-REDONDO M, TORRES-SOSPEDRA J. Some experiments with ensembles of neural networks for classification of hyperspectral images[C]//Proc. of the International Symposium on Neural Networks, 2004: 912-917. |
4 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
5 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
6 | PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans.on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359. |
7 | RAJAN S , GHOSH J , CRAWFORD M M . Exploiting class hierarchies for knowledge transfer in hyperspectral data[J]. IEEE Trans.on Geoscience & Remote Sensing, 2006, 44 (11): 3408- 3417. |
8 |
LV Q Z , FENG W , QUAN Y H , et al. Enhanced-random-feature-subspace-based ensemble CNN for the imbalanced hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 3988- 3999.
doi: 10.1109/JSTARS.2021.3069013 |
9 | GARCÍA S , ZHANG Z L , ALTALHI A , et al. Dynamic ensemble selection for multi-class imbalanced datasets[J]. Information Sciences, 2018, 445, 22- 37. |
10 |
ALOTAIBI B , ALOTAIBI M . A hybrid deep ResNet and inception model for hyperspectral image classification[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2020, 88 (6): 463- 476.
doi: 10.1007/s41064-020-00124-x |
11 | ZHONG Z L, LI J, MA L F, et al. Deep residual networks for hyperspectral image classification[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2017: 1824-1827. |
12 |
林聪, 李二珠, 杜培军. 样本迁移支持下的遥感影像自动分类方法[J]. 测绘通报, 2018, (4): 57- 62.
doi: 10.13474/j.cnki.11-2246.2018.0110 |
LIN C , LI E Z , DU P J . An automatic approach for remote sensing classification supported by sample transfer[J]. Bulletin of Surveying and Mapping, 2018, (4): 57- 62.
doi: 10.13474/j.cnki.11-2246.2018.0110 |
|
13 | DAI W, YANG Q, XUE G R, et al. Self-taught clustering[C]// Proc. of the 25th International Conference on Machine Learning, 2008: 200-207. |
14 |
LIU X B , LIU Z T , WANG G J , et al. Ensemble transfer learning algorithm[J]. IEEE Access, 2018, 6, 2389- 2396.
doi: 10.1109/ACCESS.2017.2782884 |
15 | YOSINSKI J , CLUNE J , BENGIO Y , et al. How transferable are features in deep neural networks?[J]. Advances in Neural Information Processing Systems, 2014, 27, 3320- 3328. |
16 | RÜCKERT U, KRAMER S. Kernel-based inductive transfer[C]// Proc. of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2008: 220-233. |
17 | RAINA R, BATTLE A, LEE H L, et al. Self-taught learning: transfer learning from unlabeled data[C]//Proc. of the 24th International Conference on Machine Learning, 2007: 759-766. |
18 |
刘大鹏, 曹永锋, 张伦. 深度迁移主动学习研究综述[J]. 现代计算机, 2021, (10): 88- 93.
doi: 10.3969/j.issn.1007-1423.2021.10.017 |
LIU D P , CAO Y F , ZHANG L . Review of research on deep transfer active learning[J]. Modern Computer, 2021, (10): 88- 93.
doi: 10.3969/j.issn.1007-1423.2021.10.017 |
|
19 | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[EB/OL]. [2022-11-23]. https://axiv.org/abs/1412.3474. |
20 | LONG M S, CAO Y, WANG J M, et al. Learning transfer-able features with deep adaptation networks[C]//Proc. of the 32nd International Conference on Machine Learning, 2015: 97-105. |
21 |
WU N , WENG S Z , CHEN J X , et al. Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition[J]. Computers and Electronics in Agriculture, 2022, 196, 106850.
doi: 10.1016/j.compag.2022.106850 |
22 |
ÖZDEMIR A , POLAT K , ALHUDHAIF A . Classification of imbalanced hyperspectral images using SMOTE-based deep learning methods[J]. Expert Systems with Applications, 2021, 178, 114986.
doi: 10.1016/j.eswa.2021.114986 |
23 |
AMIRRUDDIN A D , MUHARAM F M , ISMAIL M H , et al. Hyperspectral spectroscopy and imbalance data approaches for classification of oil palm's macronutrients observed from frond 9 and 17[J]. Computers and Electronics in Agriculture, 2020, 178, 105768.
doi: 10.1016/j.compag.2020.105768 |
24 |
FENG W , HUANG W J , REN J C . Class imbalance ensemble learning based on the margin theory[J]. Applied Sciences, 2018, 8 (5): 815.
doi: 10.3390/app8050815 |
25 | WANG Y L, WANG F C, ZHU Q Y, et al. Transferred tensor decomposition-based deep learning for hyperspectral anomaly detection[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2021: 5279-5282. |
26 |
YANG B , HU S S , GUO Q D , et al. Multi-source domain transfer learning based on spectral projections for hyperspectral image classification[J]. IEEE Journal of Selected Topics in App-lied Earth Observations and Remote Sensing, 2022, 15, 3730- 3739.
doi: 10.1109/JSTARS.2022.3173676 |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
28 |
FENG W , HUANG W J , BAO W X . Imbalanced hyperspectral image classification with an adaptive ensemble method based on SMOTE and rotation forest with differentiated sampling rates[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1879- 1883.
doi: 10.1109/LGRS.2019.2913387 |
29 | VENKATESWARLU B, POORNIMA K, VASAVI R, et al. A study on class imbalance problem using genetic algorithm[C]// Proc. of the 4th International Conference on Smart Systems and Inventive Technology, 2022: 1709-1714. |
30 |
CHAWLA N V , BOWYER K W , HALL L O , et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16, 321- 357.
doi: 10.1613/jair.953 |
31 | 王晋东, 陈益强. 迁移学习导论[M]. 北京: 电子工业出版社, 2021. |
WANG J D , CHEN Y Q . Introduction to transfer learning[M]. Beijing: Publishing House of Electronic Industry, 2021. | |
32 | GANIN Y , USTINOVA E , AJAKAN H , et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17 (1): 2030- 2096. |
33 | SUN B C, SAENKO K. Deep coral: correlation alignment for deep domain adaptation[C]//Proc. of the European Conference on Computer Vision, 2016: 443-450. |
34 |
FENG W , DAUPHIN G , HUANG W J , et al. Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (7): 2159- 2169.
doi: 10.1109/JSTARS.2019.2922297 |
35 |
ZHU Y C , ZHUANG F Z , WANG J D , et al. Multi-representation adaptation network for cross-domain image classification[J]. Neural Networks, 2019, 119, 214- 221.
doi: 10.1016/j.neunet.2019.07.010 |
[1] | 马悦, 吴琳, 许霄. 基于多智能体强化学习的协同目标分配[J]. 系统工程与电子技术, 2023, 45(9): 2793-2801. |
[2] | 王慧赢, 王春平, 付强, 韩子硕, 张冬冬. 基于图像特征的红外与低照度图像融合[J]. 系统工程与电子技术, 2023, 45(8): 2395-2404. |
[3] | 姜雨石, 陈旸, 高路, 蔡李根, 吕吉星. 重型运载火箭预设时间自适应控制[J]. 系统工程与电子技术, 2023, 45(8): 2570-2577. |
[4] | 刘文波, 姚翼荣, 张弓, 胡文. 超维计算概念、应用及研究进展[J]. 系统工程与电子技术, 2023, 45(7): 1938-1956. |
[5] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
[6] | 杨帆, 马萍, 李伟, 杨明. 基于孪生网络的仿真模型智能排序评估方法[J]. 系统工程与电子技术, 2023, 45(7): 2060-2068. |
[7] | 姜雨, 袁琪, 胡志韬, 吴薇薇, 顾欣. 基于气象因素的机场进离港延误预测[J]. 系统工程与电子技术, 2023, 45(6): 1722-1731. |
[8] | 董泽洪, 李颖晖, 吕茂隆, 李哲, 裴彬彬. 考虑输入受限的高超声速飞行器非奇异固定时间自适应切换控制[J]. 系统工程与电子技术, 2023, 45(5): 1476-1488. |
[9] | 沈子涵, 赵修斌, 张闯, 张良, 刘鑫贤. 基于长短期记忆神经网络的自适应容错方法[J]. 系统工程与电子技术, 2023, 45(3): 831-838. |
[10] | 汪锐, 张天骐, 安泽亮, 王雪怡, 方竹. 基于联合特征参数和一维CNN的MIMO-OFDM系统调制识别算法[J]. 系统工程与电子技术, 2023, 45(3): 902-912. |
[11] | 闫啸家, 梁伟阁, 张钢, 佘博, 田福庆. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法[J]. 系统工程与电子技术, 2023, 45(3): 931-940. |
[12] | 吴诗辉, 周宇, 李正欣, 刘晓东, 贺波. 基于神经网络的时变参数系统仿真优化方法[J]. 系统工程与电子技术, 2023, 45(2): 472-480. |
[13] | 宋波涛, 许广亮. 基于LSTM与1DCNN的导弹轨迹预测方法[J]. 系统工程与电子技术, 2023, 45(2): 504-512. |
[14] | 杨秀霞, 姜子劼, 张毅, 王聪. 针对机动目标的三维实时滚动优化制导策略[J]. 系统工程与电子技术, 2023, 45(2): 546-558. |
[15] | 黄妍妍, 盖绍彦, 达飞鹏. 三分支空间变换注意力机制的图像匹配算法[J]. 系统工程与电子技术, 2023, 45(11): 3363-3373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||