1 |
康玉祥, 陈果, 尉询楷, 等. 基于残差网络的航空发动机滚动轴承故障多任务诊断方法[J]. 振动与冲击, 2022, 41 (16): 285- 293.
doi: 10.13465/j.cnki.jvs.2022.16.037
|
|
KANG Y X , CHEN G , YU X K , et al. A multi-task fault diagnosis method of rolling bearings based on the residual network[J]. Journal of Vibration and Shock, 2022, 41 (16): 285- 293.
doi: 10.13465/j.cnki.jvs.2022.16.037
|
2 |
李泽东, 李志农, 陶俊勇, 等. 基于特征融合的注意力增强卷积神经网络的航空发动机滚动轴承故障诊断方法[J]. 兵工学报, 2022, 43 (12): 3228- 3239.
|
|
LI Z D , LI Z N , TAO J Y , et al. Fault diagnosis for aero-engine rolling bearings based on an attention augmented convolutional neural network with feature fusion[J]. Acta Armamentarii, 2023, 43 (12): 3228.
|
3 |
杨志军. 基于优化MOMEDA与改进PSO-Elman的铁路列车滚动轴承故障诊断研究[D]. 北京: 北京交通大学, 2022.
|
|
YANG Z J. Research on fault diagnosis of rolling bearings of railway trains based on optimized MOMEDA and improved PSO-Elman[D]. Beijing: Beijing Jiaotong University, 2022.
|
4 |
YAN G X , CHEN J , BAI Y , et al. A survey on fault diagnosis approaches for rolling bearings of railway vehicles[J]. Processes, 2022, 10 (4): 724.
doi: 10.3390/pr10040724
|
5 |
柳晓龙. 基于深度学习的滚动轴承故障诊断系统的设计与实现[D]. 沈阳: 中国科学院沈阳计算技术研究所, 2022.
|
|
LIU X L. Design and implementation of rolling bearing fault diagnosis system based on deep learning[D]. Shenyang: Shenyang Institute of Computing Technology, Chinese Academy of Sciences, 2022.
|
6 |
HU J , DENG S E . Rolling bearing fault diagnosis based on wireless sensor network data fusion[J]. Computer Communications, 2022, 181, 404- 411.
doi: 10.1016/j.comcom.2021.10.035
|
7 |
陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56 (17): 91- 107.
|
|
CHEN S Q , PENG Z K , ZHOU P . Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56 (17): 91- 107.
|
8 |
WU G G , YAN T Y , YANG G L , et al. A review on rolling bearing fault signal detection methods based on different sensors[J]. Sensors, 2022, 22 (21): 8330.
doi: 10.3390/s22218330
|
9 |
DENG W , LI Z X , LI X Y , et al. Compound fault diagnosis using optimized MCKD and sparse representation for rolling bearings[J]. IEEE Trans.on Instrumentation and Measurement,, 2022, 71, 3508509.
|
10 |
WANG Z L , YANG J H , GUO Y . Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures[J]. Mechanical Systems and Signal Processing, 2022, 172, 108964.
doi: 10.1016/j.ymssp.2022.108964
|
11 |
YIN C , WANG Y L , MA G C , et al. Weak fault feature extraction of rolling bearings based on improved ensemble noise-reconstructed EMD and adaptive threshold denoising[J]. Mechanical Systems and Signal Processing, 2022, 171, 108834.
doi: 10.1016/j.ymssp.2022.108834
|
12 |
张迅, 赵宇, 阮灵辉, 等. 基于小波变换分析箱梁振动噪声的时频特性[J]. 西南交通大学学报, 2020, 55 (1): 109- 117.
|
|
ZHANG X , ZHAO Y , RUAN L H , et al. Time-frequency characteristics of box-girder vibration and noise based on wavelet transform[J]. Journal of Southwest Jiaotong University, 2020, 55 (1): 109- 117.
|
13 |
HUANG N E , SHEN Z , LONG S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995.
doi: 10.1098/rspa.1998.0193
|
14 |
WU Z H , HUANG N E . Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41.
doi: 10.1142/S1793536909000047
|
15 |
DRAGOMIRETSKIY K , ZOSSO D . Variational mode decomposition[J]. IEEE Trans.on Signal Processing, 2014, 62 (3): 531- 544.
doi: 10.1109/TSP.2013.2288675
|
16 |
王奉涛, 柳晨曦, 张涛, 等. 基于k值优化VMD的滚动轴承故障诊断方法[J]. 振动、测试与诊断, 2018, 38 (3): 540- 547.
|
|
WANG F T , LIU C X , ZHANG T , et al. Fault diagnosis of rolling bearing based on k-optimized VMD[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38 (3): 540- 547.
|
17 |
毕凤荣, 李鑫, 马腾. 基于变模式分解的爆震特征识别方法[J]. 振动、测试与诊断, 2018, 38 (5): 903-907, 1076.
|
|
BI F R , LI X , MA T . Knock detection using variable mode decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38 (5): 903-907, 1076.
|
18 |
李华, 伍星, 刘韬, 等. 变分模态分解和改进的自适应共振技术在轴承故障特征提取中的应用[J]. 振动工程学报, 2018, 31 (4): 718- 726.
|
|
LI H , WU X , LIU T , et al. Application of variational mode decomposition and improved adaptive resonance technology in bearing fault feature extraction[J]. Journal of Vibration Engineering, 2018, 31 (4): 718- 726.
|
19 |
程军圣, 李梦君, 欧龙辉, 等. FA-PMA-VMD方法及其在齿根裂纹故障诊断中的应用[J]. 振动与冲击, 2018, 37 (15): 27-32, 67.
|
|
CHENG J S , LI M J , OU L H , et al. FA-PMA-VMD method and its application in gear tooth root crack fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37 (15): 27-32, 67.
|
20 |
唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49 (5): 73- 81.
|
|
TANG G J , WANG X L . Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49 (5): 73- 81.
|
21 |
XU B , ZHOU F X , LI H P , et al. Early fault feature extraction of bearings based on Teager energy operator and optimal VMD[J]. ISA Transactions, 2019, 86, 249- 265.
|
22 |
郑圆, 胡建中, 贾民平, 等. 一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2020, 39 (21): 195- 202.
|
|
ZHENG Y , HU J Z , JIA M P , et al. A method for rolling bearing fault feature extraction based on parametric optimization VMD[J]. Journal of Vibration and Shock, 2020, 39 (21): 195- 202.
|
23 |
SEYEDALI M , SEYED M , ANDREW L . Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69, 46- 61.
|
24 |
LI J M , YAO X F , WANG H , et al. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 126, 568- 589.
|
25 |
SUN H C , FANG L , ZHAO F . A fault feature extraction method for single-channel signal of rotary machinery based on VMD and KICA[J]. Journal of Vibroengineering, 2019, 21 (2): 370- 383.
|
26 |
郑义, 岳建海, 焦静, 等. 基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2021, 40 (1): 86- 94.
|
|
ZHENG Y , YUE J H , JIAO J , et al. Fault feature extraction method of rolling bearing based on parameter optimization VMD[J]. Journal of Vibration and Shock, 2021, 40 (1): 86- 94.
|