1 |
WANDELT S , SUN X , FRICKE H . ADS-BI: compressed indexing of ADS-B data[J]. IEEE Trans.on Intelligent Transportation Systems, 2018, 19 (12): 3795- 3806.
doi: 10.1109/TITS.2017.2784371
|
2 |
KHANDKER S , TURTIAINEN H , COSTIN A , et al. On the (in) security of 1090ES and UAT978 mobile cockpit information systems-an attacker perspective on the availability of ADS-B safety-and mission-critical systems[J]. IEEE Access, 2022, 10, 37718- 37730.
doi: 10.1109/ACCESS.2022.3164704
|
3 |
COSTIN A, FRANCILLON A. Ghost in the air (traffic): on insecurity of ADS-B protocol and practical attacks on ADS-B devices[C]//Proc. of the Black Hat USA, 2012.
|
4 |
FENG Z L, PAN W J, WANG Y. A data authen-tication solution of ADS-B system based on X. 509 certificate[C]//Proc. of the 27th International Congress of the Aeronautical Sciences, 2010.
|
5 |
STROHMEIER M, LENDERS V, MARTINOVIC I. Lightweight location verification in air traffic surveillance networks[C]//Proc. of the ACM Workshop on Cyber-Physical System Security, 2015: 49-60.
|
6 |
陈蕾, 吴仁彪, 卢丹. 利用多普勒效应的ADS-B欺骗式干扰检测方法[J]. 信号处理, 2018, 34 (6): 722- 728.
|
|
CHEN L , WU R B , LU D . ADS-B spoofing detection method using doppler effect[J]. Journal of Signal Processing, 2018, 34 (6): 722- 728.
|
7 |
HABLER E , SHABTAI A . Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages[J]. Computers & Security, 2018, 78, 155- 173.
doi: 10.3969/j.issn.1001-3695.2018.01.032
|
8 |
丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40 (12): 162- 172.
|
|
DING J L , ZOU Y K , WANG J , et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (12): 162- 172.
|
9 |
罗鹏, 王布宏, 李腾耀. 基于BiGRU-SVDD的ADS-B异常数据检测模型[J]. 航空学报, 2020, 41 (10): 323878.
|
|
LUO P , WANG B H , LI T Y . ADS-B anomaly datadetection model based on BiGRU-SVDD[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (10): 323878.
|
10 |
SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 2828-2837.
|
11 |
FRACCARO M , SØNDERBY S K , PAQUET U , et al. Sequential neural models with stochastic layers[J]. Advances in Neural Information Processing Systems, 2016, 29, 2207- 2215.
|
12 |
LUO P , WANG B H , LI T Y , et al. ADS-B anomaly data detection model based on VAE-SVDD[J]. Computers & Security, 2021, 104, 102213.
|
13 |
VASWANI A , SHAZEER N , PARMAR N , et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 6000- 6010.
|
14 |
MENG H Y, ZHANG Y X, LI Y X, et al. Spacecraft anomaly detection via transformer reconstruction error[C]//Proc. of the International Conference on Aerospace System Science and Engineering, 2019: 351-362.
|
15 |
DUAN T. Unsupervised multivariate time series anomaly detection via transformer-based models and time series encoding[D]. Toronto: University of Toronto, 2021.
|
16 |
BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[C]//Proc. of the 20th SIGNLL Conference on Computational Natural Language Learning, 2015: 10-21.
|
17 |
BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. [2022-09-25]. https://arxiv.org/abs/1607.06450.
|
18 |
KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL]. [2022-09-25]. https://arxiv.org/abs/1312.6114.
|
19 |
SETIAWAN H, SPERBER M, NALLASAMY U, et al. Variational neural machine translation with normalizing flows[C]//Proc. of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 7771-7777.
|
20 |
BENGIO Y , DUCHARME R , VINCENT P . A neural probabilistic language model[J]. Advances in Neural Information Processing Systems, 2000, 13, 893- 899.
|
21 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. [2022-10-08]. https://arxiv.org/abs/1412.6980.
|
22 |
LI K L, HUANG H K, TIAN S F, et al. Improving one-class SVM for anomaly detection[C]//Proc. of the International Conference on Machine Learning and Cybernetics, 2003: 3077-3081.
|
23 |
BREUNIG M M, KRIEGEL H P, Ng R T, et al. LOF: identifying density-based local outliers[C]//Proc. of the ACM SIGMOD International Conference on Management of Data, 2000: 93-104.
|
24 |
ZHANG K Z, KANG X D, LI S T. Isolation forest for anomaly detection in hyperspectral images[C]//Proc. of the IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019: 437-440.
|