| 1 | ZHANG B, JI S P, XU J E, et al. Network security situation prediction model based on EMD and ELPSO optimized BiGRU neural network[EB/OL]. [2022-04-26]. https://doi.org/10.21203/rs.3.rs-778136/v1. | 
																													
																						| 2 | 赵冬梅, 李志坚.  基于Transformer的网络安全态势预测[J]. 华中科技大学学报(自然科学版), 2022, 50 (5): 46- 52. | 
																													
																						|  | ZHAO D M ,  LI Z J .  Network security situation prediction based on Transformer[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50 (5): 46- 52. | 
																													
																						| 3 | 唐延强, 李成海, 王坚, 等.  IGAPSO-ELM: 一种网络安全态势预测模型[J]. 电光与控制, 2022, 29 (2): 30- 35. | 
																													
																						|  | TANG Y Q ,  LI C H ,  WANG J , et al.  IGAPSO-ELM: a network security posture prediction model[J]. Electro-Optics and Control, 2022, 29 (2): 30- 35. | 
																													
																						| 4 | LI R X ,  LI F ,  WU C W , et al.  Research on vehicle network security situation prediction based on improved CLPSO-RBF[J]. Journal of Physics: Conference Series, 2021, 1757 (1): 012148. doi: 10.1088/1742-6596/1757/1/012148
 | 
																													
																						| 5 | 何春蓉, 朱江.  基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43 (1): 258- 266. | 
																													
																						|  | HE C R ,  ZHU J .  An attention mechanism-based security posture prediction method for GRU neural networks[J]. Systems Engineering and Electronics, 2021, 43 (1): 258- 266. | 
																													
																						| 6 | 中国互联网信息中心. 2012至2022年网络安全信息与动态周报[EB/OL]. [2022-04-20]. https://www.cert.org.cn/publish/main/index.html. | 
																													
																						|  | National Internet Emergency Center. Weekly report on network security information from 2012 to 2022[EB/OL]. [2022-04-20]. https://www.cert.org.cn/publish/main/index.html. | 
																													
																						| 7 | BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1803.01271. | 
																													
																						| 8 | HEWAGE P ,  BEHERA A ,  TROVATI M , et al.  Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24 (21): 16453- 16482. doi: 10.1007/s00500-020-04954-0
 | 
																													
																						| 9 | ZHANG R J ,  SUN F ,  SONG Z W , et al.  Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021, 1338607. | 
																													
																						| 10 | HU D. An introductory survey on attention mechanisms in NLP problems[C]//Proc. of SAI Intelligent Systems Conference, 2019: 432-448. | 
																													
																						| 11 | HOCHREITER S ,  SCHMIDHUBER J .  Long short-term memory[J]. Neural Computation, 1997, 9, 1735- 1780. doi: 10.1162/neco.1997.9.8.1735
 | 
																													
																						| 12 | PRIHATNO A T ,  NURCAHYANTO H ,  AHMED M F , et al.  Forecasting PM2. 5 concentration using a single-dense layer BiLSTM method[J]. Electronics, 2021, 10 (15): 1808. doi: 10.3390/electronics10151808
 | 
																													
																						| 13 | PENG T ,  ZHANG C ,  ZHOU J Z , et al.  An integrated framework of bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting[J]. Energy, 2021, 221, 119887. doi: 10.1016/j.energy.2021.119887
 | 
																													
																						| 14 | WRIGHT L, DEMEURE N. Ranger21: a synergistic deep learning optimizer[EB/OL]. [2022-04-23]. https://arxiv.org/abs/2016.13731. | 
																													
																						| 15 | LIU L Y, JIANG H M, HE P C, et al. On the variance of the adaptive learning rate and beyond[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1908.03265. | 
																													
																						| 16 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1711.05101. | 
																													
																						| 17 | ZHANG M R, LUCAS J, HINTON G, et al. Lookahead optimizer: k steps forward, 1 step back[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1907.08610. | 
																													
																						| 18 | CARLISLE A, DOZIER G. An off-the-shelf PSO[C]//Proc. of the Workshop on Particle Swarm Optimization, 2001. | 
																													
																						| 19 | MUNKHDALAI L .  An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019, 7, 99099- 99114. doi: 10.1109/ACCESS.2019.2930069
 | 
																													
																						| 20 | WANG G .  Comparative study on different neural networks for network security situation prediction[J]. Security and Privacy, 2021, 4 (1): e138. | 
																													
																						| 21 | JAIS I K M ,  ISMAIL A R ,  NISA S Q .  Adam optimization algorithm for wide and deep neural network[J]. Knowledge Engineering and Data Science, 2019, 2 (1): 41- 46. | 
																													
																						| 22 | WANG Y J, ZHOU P Y, ZHONG W Y. An optimization strategy based on hybrid algorithm of ADAM and SGD[C]//MATEC Web of Conferences, 2018, 232: 03007. | 
																													
																						| 23 | LYDIA A ,  FRANCIS S .  Adagrad-an optimizer for stochastic gradient descent[J]. International Journal of Information and Computing Science, 2019, 6 (5): 566- 568. | 
																													
																						| 24 | YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Proc. of the International Conference on Rough Sets and Knowledge Technology, 2014: 364-375. | 
																													
																						| 25 | BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]//Proc. of the 27th International Conference on Machine Learning, 2010: 111-118. | 
																													
																						| 26 | NAGI J, DUCATELLE F, DI CARO G A, et al. Max-pooling convolutional neural networks for vision-based hand gesture recognition[C]//Proc. of the 2011 IEEE International Confe-rence on Signal and Image Processing Applications, 2011: 342-347. | 
																													
																						| 27 | WANG S H ,  KHAN M A ,  GOVINDARAJ V , et al.  Deep rank-based average pooling network for COVID-19 recognition[J]. Computers, Materials & Continua, 2022, 70 (2): 2797- 2813. | 
																													
																						| 28 | LI C S ,  TANG G ,  XUE X M , et al.  Short-term wind speed interval prediction based on ensemble GRU model[J]. IEEE Trans.on Sustainable Energy, 2019, 11 (3): 1370- 1380. | 
																													
																						| 29 | MUNKHDALAI L ,  MUNKHDALAI T ,  PARK K H , et al.  An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019, 7, 99099- 99114. | 
																													
																						| 30 | DU J ,  CHENG Y Y ,  ZHOU Q , et al.  Power load forecasting using BiLSTM-attention[J]. IOP Conference Series: Earth and Environmental Science, 2020, 440 (3): 032115. |