系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (11): 3671-3679.doi: 10.12305/j.issn.1001-506X.2023.11.36

• 通信与网络 • 上一篇    下一篇

基于TCN-BiLSTM的网络安全态势预测

孙隽丰1,2,*, 李成海1, 曹波1   

  1. 1. 空军工程大学防空反导学院, 陕西 西安 710051
    2. 中国人民解放军第94994部队, 江苏 南京 210000
  • 收稿日期:2022-05-03 出版日期:2023-10-25 发布日期:2023-10-31
  • 通讯作者: 孙隽丰
  • 作者简介:孙隽丰(1995—), 男, 硕士研究生, 主要研究方向为网络安全态势预测
    李成海(1966—), 男, 教授, 硕士, 主要研究方向为网络安全态势感知、嵌入式操作系统
    曹波(1998—), 男, 硕士研究生, 主要研究方向为网络安全态势感知
  • 基金资助:
    国家自然科学基金(62002362);国防自然科学基金(61703426);陕西省高校科协青年人才托举计划(2019038);中国陕西省创新能力支持计划(2020KJXX-065)

Network security situation prediction based on TCN-BiLSTM

Junfeng SUN1,2,*, Chenghai LI1, Bo CAO1   

  1. 1. Air Defense and Antimissile School, Air Force Engineering University, Xi'an 710051, China
    2. Unit 94994 of the PLA, Nanjing 210000, China
  • Received:2022-05-03 Online:2023-10-25 Published:2023-10-31
  • Contact: Junfeng SUN

摘要:

针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题, 提出一种基于时域卷积网络(temporal convolution network, TCN)和双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络的预测方法。首先, 将TCN处理时间序列问题的优势应用到态势预测上学习态势值的序列特征; 随后, 引入注意力机制动态调整属性的权值; 然后, 利用BiLSTM模型学习态势值的前后状况, 以提取序列中更多的信息进行预测; 利用粒子群优化(particle swarm optimization, PSO)算法进行超参数寻优, 提升预测能力。实验结果表明, 所提预测方法的拟合度可达0.999 5, 其拟合效果和收敛速度均优于其他模型。

关键词: 网络安全, 态势预测, 时域卷积网络, 双向长短期记忆网络, 粒子群优化, 注意力机制

Abstract:

In order to solve the problems of low prediction accuracy and slow convergence speed of existing network security situation prediction models, a prediction method based on temporal convolution network (TCN) and bi-directional long short-term memory (BiLSTM) network is proposed. This method firstly applies the advantages of TCN in dealing with time series problems to the sequence characteristics of learning potential values in situation prediction, then introduces the attention mechanism to dynamically adjust the weights of attributes. Secondly, the proposed method uses the status before and after learning potential values of BiLSTM model to extract more information from the series for prediction. Particle swarm optimization(PSO) algorithm is used to optimize the hyperparameters to improve the prediction ability. The experimental results show that the fitting degree of the proposed prediction method can reach 0.999 5, and its fitting effect and convergence speed are better than other models.

Key words: network security, situation prediction, temporal convolution network (TCN), bi-directional long short-term memory network (BiLSTM), particle swarm optimization (PSO), attention mechanism

中图分类号: