1 |
ZHANG B, JI S P, XU J E, et al. Network security situation prediction model based on EMD and ELPSO optimized BiGRU neural network[EB/OL]. [2022-04-26]. https://doi.org/10.21203/rs.3.rs-778136/v1.
|
2 |
赵冬梅, 李志坚. 基于Transformer的网络安全态势预测[J]. 华中科技大学学报(自然科学版), 2022, 50 (5): 46- 52.
|
|
ZHAO D M , LI Z J . Network security situation prediction based on Transformer[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50 (5): 46- 52.
|
3 |
唐延强, 李成海, 王坚, 等. IGAPSO-ELM: 一种网络安全态势预测模型[J]. 电光与控制, 2022, 29 (2): 30- 35.
|
|
TANG Y Q , LI C H , WANG J , et al. IGAPSO-ELM: a network security posture prediction model[J]. Electro-Optics and Control, 2022, 29 (2): 30- 35.
|
4 |
LI R X , LI F , WU C W , et al. Research on vehicle network security situation prediction based on improved CLPSO-RBF[J]. Journal of Physics: Conference Series, 2021, 1757 (1): 012148.
doi: 10.1088/1742-6596/1757/1/012148
|
5 |
何春蓉, 朱江. 基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43 (1): 258- 266.
|
|
HE C R , ZHU J . An attention mechanism-based security posture prediction method for GRU neural networks[J]. Systems Engineering and Electronics, 2021, 43 (1): 258- 266.
|
6 |
中国互联网信息中心. 2012至2022年网络安全信息与动态周报[EB/OL]. [2022-04-20]. https://www.cert.org.cn/publish/main/index.html.
|
|
National Internet Emergency Center. Weekly report on network security information from 2012 to 2022[EB/OL]. [2022-04-20]. https://www.cert.org.cn/publish/main/index.html.
|
7 |
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1803.01271.
|
8 |
HEWAGE P , BEHERA A , TROVATI M , et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24 (21): 16453- 16482.
doi: 10.1007/s00500-020-04954-0
|
9 |
ZHANG R J , SUN F , SONG Z W , et al. Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021, 1338607.
|
10 |
HU D. An introductory survey on attention mechanisms in NLP problems[C]//Proc. of SAI Intelligent Systems Conference, 2019: 432-448.
|
11 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9, 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
12 |
PRIHATNO A T , NURCAHYANTO H , AHMED M F , et al. Forecasting PM2. 5 concentration using a single-dense layer BiLSTM method[J]. Electronics, 2021, 10 (15): 1808.
doi: 10.3390/electronics10151808
|
13 |
PENG T , ZHANG C , ZHOU J Z , et al. An integrated framework of bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting[J]. Energy, 2021, 221, 119887.
doi: 10.1016/j.energy.2021.119887
|
14 |
WRIGHT L, DEMEURE N. Ranger21: a synergistic deep learning optimizer[EB/OL]. [2022-04-23]. https://arxiv.org/abs/2016.13731.
|
15 |
LIU L Y, JIANG H M, HE P C, et al. On the variance of the adaptive learning rate and beyond[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1908.03265.
|
16 |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1711.05101.
|
17 |
ZHANG M R, LUCAS J, HINTON G, et al. Lookahead optimizer: k steps forward, 1 step back[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1907.08610.
|
18 |
CARLISLE A, DOZIER G. An off-the-shelf PSO[C]//Proc. of the Workshop on Particle Swarm Optimization, 2001.
|
19 |
MUNKHDALAI L . An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019, 7, 99099- 99114.
doi: 10.1109/ACCESS.2019.2930069
|
20 |
WANG G . Comparative study on different neural networks for network security situation prediction[J]. Security and Privacy, 2021, 4 (1): e138.
|
21 |
JAIS I K M , ISMAIL A R , NISA S Q . Adam optimization algorithm for wide and deep neural network[J]. Knowledge Engineering and Data Science, 2019, 2 (1): 41- 46.
|
22 |
WANG Y J, ZHOU P Y, ZHONG W Y. An optimization strategy based on hybrid algorithm of ADAM and SGD[C]//MATEC Web of Conferences, 2018, 232: 03007.
|
23 |
LYDIA A , FRANCIS S . Adagrad-an optimizer for stochastic gradient descent[J]. International Journal of Information and Computing Science, 2019, 6 (5): 566- 568.
|
24 |
YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Proc. of the International Conference on Rough Sets and Knowledge Technology, 2014: 364-375.
|
25 |
BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]//Proc. of the 27th International Conference on Machine Learning, 2010: 111-118.
|
26 |
NAGI J, DUCATELLE F, DI CARO G A, et al. Max-pooling convolutional neural networks for vision-based hand gesture recognition[C]//Proc. of the 2011 IEEE International Confe-rence on Signal and Image Processing Applications, 2011: 342-347.
|
27 |
WANG S H , KHAN M A , GOVINDARAJ V , et al. Deep rank-based average pooling network for COVID-19 recognition[J]. Computers, Materials & Continua, 2022, 70 (2): 2797- 2813.
|
28 |
LI C S , TANG G , XUE X M , et al. Short-term wind speed interval prediction based on ensemble GRU model[J]. IEEE Trans.on Sustainable Energy, 2019, 11 (3): 1370- 1380.
|
29 |
MUNKHDALAI L , MUNKHDALAI T , PARK K H , et al. An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019, 7, 99099- 99114.
|
30 |
DU J , CHENG Y Y , ZHOU Q , et al. Power load forecasting using BiLSTM-attention[J]. IOP Conference Series: Earth and Environmental Science, 2020, 440 (3): 032115.
|