1 |
SIMKO M, MEH C, WRULICH M, et al. Doubly dispersive channel estimation with scalable complexity[C]//Proc. fo the International Itg Workshop on Smart Antennas, 2010: 251-256.
|
2 |
ZHANG J L, WEN H, SONG H H, et al. Using basis expansion model for physical layer authentication in time-variant system[C]//Proc. of the IEEE Conference on Communications and Network Security, 2016: 348-349.
|
3 |
SHEN X F, LIAO Y, DAI X, et al. BEM-based EKF-RTSS channel estimation for non-stationary doubly-selective channel[C]// Proc. of the IEEE/CIC International Conference on Communications in China, 2018: 536-541.
|
4 |
卢娜, 高丽, 沈轩帆. 基于无迹卡尔曼滤波的双选信道估计方法[J]. 山东大学学报(工学版), 2019, 49 (4): 130- 136.
|
|
LU N , GAO L , SHEN X F . Double-selection channel estimation method based on unscented Kalman filter[J]. Journal of Shandong University (Engineering Edition), 2019, 49 (4): 130- 136.
|
5 |
桂冠, 王禹, 黄浩. 基于深度学习的物理层无线通信技术: 机遇与挑战[J]. 通信学报, 2019, 40 (2): 19- 23.
|
|
GUI G , WANG Y , HUANG H . Deep learning based physical layer wireless communication techniques: opportunities and challenges[J]. Journal on Communications, 2019, 40 (2): 19- 23.
|
6 |
WANG T Q , WEN C K , WANG H Q . Deep learning for wireless physical layer: opportunities and challenges[J]. China Communications, 2017, 14 (11): 92- 111.
doi: 10.1109/CC.2017.8233654
|
7 |
YE H , LI G Y , JUANG J H . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7 (1): 114- 117.
doi: 10.1109/LWC.2017.2757490
|
8 |
LI L J , CHEN H , CHANG H H . Deep residual learning meets OFDM channel estimation[J]. IEEE Wireless Communications Letters, 2020, 9 (5): 615- 618.
doi: 10.1109/LWC.2019.2962796
|
9 |
YI X M , ZHONG C J . Deep learning for joint channel estimation and signal detection in OFDM systems[J]. IEEE Communications Letters, 2020, 24 (12): 2780- 2784.
doi: 10.1109/LCOMM.2020.3014382
|
10 |
LIAO Y, HUA Y X, YAO H M, et al. ChanEstNet: a deep learning based channel estimation for high-speed scenarios[C]// Proc. of the IEEEInternational Conference on Communications, 2019.
|
11 |
LIAO Y , HUA Y X , CAI Y L . Deep learning based channel estimation algorithm for fast time-varying MIMO-OFDM systems[J]. IEEE Communications Letters, 2020, 24 (3): 572- 576.
doi: 10.1109/LCOMM.2019.2960242
|
12 |
邵凯, 陈连成, 刘胤. 高移动性Jakes信道的学习与估计[J]. 系统工程与电子技术, 2021, 43 (4): 1119- 1125.
|
|
SHAO K , CHEN L C , LIU Y . Learning and estimation of high mobility Jakes channel[J]. Systems Engineering and Electronics, 2021, 43 (4): 1119- 1125.
|
13 |
沈轩帆. 高速移动环境下的OFDM信道估计研究[D]. 重庆: 重庆大学, 2019.
|
|
SHEN X F. Research on OFDM channel estimation in high-speed mobile environment[D]. Chongqing: Chongqing University, 2019.
|
14 |
廖勇, 陈颖. 基于基扩展模型的UKF-RTSS高可靠鲁棒V2V信道估计[J]. 电子与信息学报, 2022, 44 (5): 1792- 1799.
|
|
LIAO Y , CHEN Y . Ultra-reliable and robust channel estimation using basis expansion model-Based UKF-RTSS scheme for V2V systems[J]. Journal of Electronics & Information Technology, 2022, 44 (5): 1792- 1799.
|
15 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
16 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
17 |
ZHENG Y R , XIAO C S , et al. Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms[J]. IEEE Communications Letters, 2002, 6 (6): 256- 258.
|