系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (11): 3555-3564.doi: 10.12305/j.issn.1001-506X.2023.11.22

• 系统工程 • 上一篇    下一篇

基于贪婪-遗传算法的机场登机口分配策略

胡杰1,2,*, 鲍帆1,2, 石潇竹1,2   

  1. 1. 中国电子科技集团公司第二十八研究所, 江苏 南京 210007
    2. 空中交通管理系统全国重点实验室, 江苏 南京 210007
  • 收稿日期:2021-12-28 出版日期:2023-10-25 发布日期:2023-10-31
  • 通讯作者: 胡杰
  • 作者简介:胡杰(1987—), 男, 高级工程师, 博士, 主要研究方向为智能优化算法、交通运输规划、卫星导航、信号处理
    鲍帆(1982—), 女, 高级工程师, 硕士, 主要研究方向为交通运输规划、智慧机场总体设计
    石潇竹(1980—), 男, 研究员, 硕士, 主要研究方向为智慧机场总体设计、智能优化算法
  • 基金资助:
    江苏省科技项目(BZ2020001)

Airport gate assignment strategy based on greedy-genetic algorithm

Jie HU1,2,*, Fan BAO1,2, Xiaozhu SHI1,2   

  1. 1. The 28th Research Institute, China Electronics Technology Group Corporation, Nanjing 210007, China
    2. State Key Laboratory of Air Traffic Management System, Nanjing 210007, China
  • Received:2021-12-28 Online:2023-10-25 Published:2023-10-31
  • Contact: Jie HU

摘要:

针对枢纽机场新建卫星厅导致中转旅客航班衔接时间延长、换乘失败概率增大的问题, 开展了机场登机口多目标优化分配问题研究。首先, 在顾及航班类型、机体类型和转场时间间隔等约束条件基础上, 建立了航班-登机口多目标优化分配模型。然后, 基于贪婪算法思想, 按照航班“先到先分配”的原则指派登机口, 以生成初始种群, 并利用遗传算法实现机场登机口分配模型求解。最后, 利用实例数据进行了验证, 该方法能够成功为524个航班分配登机口, 占航班总数86.47%, 中转旅客最短流程时间为20 min的比率为20.07%, 其所占比率最大, 实验结果验证了模型和算法的有效性。

关键词: 枢纽机场, 多目标优化, 贪婪算法, 遗传算法

Abstract:

Aiming at the problem that the newly built satellite hall in the hub airport leads to the prolonged connection time of transfer passengers and the increased probability of transfer failure, the research on the multi-objective optimal allocation of airport gates is carried out. Firstly, on the basis of considering the constraints of flight type, aircraft body type and transition time interval, a flight-gate multi-objective optimal allocation model is established. Then, based on the idea of greedy algorithm, the gates are assigned according to the principle of "first come, first allocation" for flights to generate the initial population, and the airport gate allocation model is solved by using the genetic algorithm. Finally, verification experiments are carried out by using the example data, and the results show that the method is able to successfully allocate gates for 524 flights, accounting for 86.47% of the total number of flights, and the ratio of the minimum process time of transit passengers to 20 min is 20.07%, which accounts for the largest proportion. The experimental results verify the effectiveness of the proposed model and algorithm.

Key words: hub airport, multi-objective optimal, greedy algorithm, genetic algorithm

中图分类号: