1 |
ROSENBERGER J M, HWANG H S, PALLERLA R P, et al. The generalized weapon target assignment problem[C]//Proc. of the 10th International Command and Control Research and Technology Symposium, 2005.
|
2 |
GAO S , ZHANG Z Y , ZHANG X R , et al. Immune genetic algorithm for weapon-target assignment problem[J]. Intelligent Information Technology Application, 2007, 3 (2): 145- 148.
|
3 |
BOGDANOWIC Z . A new efficient algorithm for optimal assignment of smart weapons to targets[J]. Computational & Applied Mathematics, 2009, 5 (10): 1965- 1969.
|
4 |
LEE M Z . Constrained weapon-target assignment: enhanced very large scale neighborhood search algorithm[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 4 (1): 198- 204.
|
5 |
SUMMERS D S , ROBBINS M J , LUNDAY B J . An approximate dynamic programming approach for comparing firing policies in a networked air defense environment[J]. Computers & Operations Research, 2020, 11 (2): 104- 112.
|
6 |
LI J , XIN B , PARDALOS P M , et al. Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms[J]. Annals of Operations Research, 2021, 2 (5): 296- 299.
|
7 |
汪民乐, 范阳涛. 基于效果的常规导弹火力分配模型智能求解算法[J]. 系统工程与电子技术, 2017, 39 (11): 2509- 2514.
|
|
WANG M L , FAN Y T . Intelligent solving algorithm for effects-based firepower allocation model of conventional missiles[J]. Systems Engineering and Electronics, 2017, 39 (11): 2509- 2514.
|
8 |
吴文海, 郭晓峰, 周思羽, 等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43 (4): 1012- 1021.
|
|
WU W H , GUO X F , ZHOU S Y , et al. Improved differential evolution algorithm for solving weapon-target assignment problem[J]. Systems Engineering and Electronics, 2021, 43 (4): 1012- 1021.
|
9 |
王玮, 刘兴林, 王军. 信息化条件下海上编队区域防空目标分配方法[J]. 系统工程理论与实践, 2015, 35 (4): 1011- 1018.
|
|
WANG W , LIU X L , WANG J . Method of area antiaircraft weapon target assignment for the warship formation under informationized conditions[J]. Systems Engineering-Theory & Practice, 2015, 35 (4): 1011- 1018.
|
10 |
贺小亮, 毕义明. 基于模拟退火遗传算法的编队对地攻击火力分配建模与优化[J]. 系统工程与电子技术, 2014, 36 (5): 900- 904.
|
|
HE X L , BI Y M . Modeling and optimization of formation air-to-ground attack fire distributionbased on simulated annealing genetic algorithm[J]. Systems Engineering and Electronics, 2014, 36 (5): 900- 904.
|
11 |
CHANG T Q , KONG D P , HAO N , et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 7 (9): 845- 863.
|
12 |
LI L Y , LIU F X , LONG G Z , et al. Modified particle swarm optimization for BMDS interceptor resource planning[J]. Applied Intelligence, 2016, 4 (3): 471- 488.
|
13 |
SIMON D . Biogeography-based optimization[J]. IEEE Trans.on Evolutionary Computation, 2008, 12 (6): 702- 713.
doi: 10.1109/TEVC.2008.919004
|
14 |
张新明, 康强, 王霞. 差分迁移和趋优变异的生物地理学优化算法[J]. 小型微型计算机系统, 2018, 39 (6): 1168- 1177.
doi: 10.3969/j.issn.1000-1220.2018.06.010
|
|
ZHANG X M , KANG Q , WANG X . Biogeography-based optimization with differential migration and global-best mutation[J]. Journal of Chinese Computer Systems, 2018, 39 (6): 1168- 1177.
doi: 10.3969/j.issn.1000-1220.2018.06.010
|
15 |
罗锐涵, 李顺民. 基于改进BBO算法的火力分配方案优化[J]. 南京航空航天大学学报, 2020, 52 (6): 897- 902.
|
|
LUO R H , LI S M . Optimization of firepower allocation based on improved BBO algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52 (6): 897- 902.
|
16 |
REIHANIAN A , DERAKHSHI M , AGHDASI H S . NBBO: a new variant of biogeography-based optimization with a novel framework and a two-phase migration operator[J]. Information Sciences, 2019, 5 (2): 178- 201.
|
17 |
PUSHPA , CHAND B J . Fireworks-inspired biogeography-based optimization[J]. Soft Computing, 2019, 2 (16): 7091- 7115.
|
18 |
ABU-ELRUB A , KHAMEES M , ABABNEH J , et al. Hybrid energy system design using greedy particle swarm and biogeography-based optimisation[J]. IET Renewable Power Generation, 2020, 14 (10): 1657- 1667.
|
19 |
ZAHRAN E G , ARAFA A A , SALEH H I , et al. A self learned invasive weed-mixed biogeography based optimization algorithm for RFID network planning[J]. Wireless Networks, 2020, 2 (3): 172- 181.
|
20 |
ZHENG Y J , LING H F , XUE J Y . Eco geography-based optimization: enhancing biogeography-based optimization with eco geographic barriers and differentiations[J]. Computers & Operations Research, 2014, 5 (2): 115- 127.
|
21 |
ZHENG X W , LU D J , WANG X G , et al. A cooperative coevolutionary biogeography-based optimizer[J]. Applied Intelligence, 2015, 4 (1): 95- 111.
|
22 |
KUMAR G P , DE S S , SATCHIDANANDA D . Adaptive neighbourhood for locally and globally tunedbiogeography based optimization algorithm[J]. Journal of King Saud University-Computer and Information Sciences, 2021, 4 (33): 453- 467.
|
23 |
LIU B , LIU Y K . Expected value of fuzzy variable and fuzzy expected value models[J]. IEEE Trans.on Fuzzy Systems, 2002, 10 (4): 445- 50.
|
24 |
ORHAN K . Air defense missile-target allocation models for a naval task group[J]. Computers & Operations Research, 2008, 35 (6): 1759- 1770.
|
25 |
汪民乐, 邓昌. 论基于效果的常规导弹火力决策[J]. 飞航导弹, 2016, 8 (12): 8- 16.
|
|
WANG M L , DENG C . On conventional missile firepower decision based on effect[J]. Aerodynamic Missile Journal, 2016, 8 (12): 8- 16.
|
26 |
RAINER S , KENNETH P . Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4): 145- 152.
|
27 |
CHENG M Y , PRAYOGO D . Symbiotic organisms search: a new metaheuristic optimization algorithm[J]. Computers & Structures, 2014, 139 (7): 98- 112.
|
28 |
KUMAR S, PANT M, DIXIT A, et al. BBO-DE: hybrid algorithm based on BBO and DE[C]//Proc. of the International Conference on Computing, Communication and Automation, 2017: 379-383.
|
29 |
YOGESH C K , HARIHARAN M , RUZELITA N , et al. Hybrid BBO-PSO and higher order spectral features for emotion and stress recognition from natural speech[J]. Applied Soft Computing, 2017, 56 (2): 217- 232.
|
30 |
ZHENG C , PENG Y , XU Y M , et al. Task scheduling algorithm based on improved NSBBO in cloud manufacturing environment[J]. Computer Engineering, 2019, 45 (10): 26- 32.
|