1 |
ZADEH L A . Fuzzy sets[J]. Information & Control, 1965, 8 (3): 338- 353.
|
2 |
ATANASSOV K . Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20 (1): 87- 96.
doi: 10.1016/S0165-0114(86)80034-3
|
3 |
陶希闻, 江文奇. 基于调整成本的三阶段区间直觉模糊型多准则群体共识改进模型[J]. 系统工程与电子技术, 2020, 42 (11): 2570- 2580.
doi: 10.3969/j.issn.1001-506X.2020.11.20
|
|
TAO X W , JIANG W Q . Three-stage consensus improvement model under interval-valued intuitionistic multi-criteria group decision-making environment based on adjustment cost[J]. Systems Engineering and Electronics, 2020, 42 (11): 2570- 2580.
doi: 10.3969/j.issn.1001-506X.2020.11.20
|
4 |
江文奇, 降晓璐. 面向属性关联的区间犹豫模糊型PROMETHEE决策方法[J]. 系统工程与电子技术, 2021, 43 (11): 3250- 3258.
doi: 10.12305/j.issn.1001-506X.2021.11.25
|
|
JIANG W Q , JIANG X L . Interval hesitant fuzzy PROMETHEE decision method for attribute association[J]. Systems Engineering and Electronics, 2021, 43 (11): 3250- 3258.
doi: 10.12305/j.issn.1001-506X.2021.11.25
|
5 |
TYCAB C . Pythagorean fuzzy linear programming technique for multidimensional analysis of preference using a squared-distance-based approach for multiple criteria decision analysis[J]. Expert Systems with Applications, 2020, 164 (7): 113908.
|
6 |
SINGH V , KUMAR C . Improving Hamming-distance computation for adaptive similarity search approach[J]. International Journal of Intelligent Information Technologies, 2022, 18 (2): 241- 256.
|
7 |
HENDIANI S , LEV B , GHAREHBAGHI A . Diagnosing social failures in sustainable supply chains using a modified Pythagorean fuzzy distance to ideal solution[J]. Computers & Industrial Engineering, 2021, 154 (8): 107156.
|
8 |
ZHANG Z H , XIAO F Y . Complex belief interval-based distance measure with its application in pattern recognition[J]. International Journal of Intelligent, 2022, 37 (1): 6811- 6832.
|
9 |
WU Q , LIN W H , ZHOU L G , et al. Enhancing multiple attribute group decision making flexibility based on information fusion technique and hesitant Pythagorean fuzzy sets[J]. Compu-ters & Industrial Engineering, 2019, 127 (4): 954- 970.
|
10 |
ZHOU F , CHEN T Y . An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems[J]. Neural Computing and Applications, 2021, 33 (2): 11821- 11844.
|
11 |
DUTTA P . A sophisticated similarity measure for picture fuzzy sets and their application[J]. Applied Soft Computing: Techniques and Applications, 2022, 21 (6): 89- 103.
|
12 |
VIJAYABALAJI S , RAMESH A , BALAJI P . A new distance and similarity measure on soft parameter sets and their applications to MCDM problem[J]. Fuzzy Mathematical Analysis and Advances in Computational Mathematics, 2022, 419 (7): 127- 136.
|
13 |
HENDIANI S , LEV B , GHAREHBAGHI A . Diagnosing social failures in sustainable supply chains using a modified Pythagorean fuzzy distance to ideal solution[J]. Computers & Industrial Engineering, 2021, 154 (2): 107156.
|
14 |
SHARMA D K , SINGH S , GANIE A H . Distance-based knowledge measure of hesitant fuzzy linguistic term set with its application in multi-criteria decision making[J]. International Journal of Fuzzy System Applications, 2022, 11 (1): 139- 158.
|
15 |
WANG F , ZHAO X D . Prospect-theory and geometric distance measure-based Pythagorean cubic fuzzy multicriteria decision-making[J]. International Journal of Intelligent Systems, 2021, 36 (8): 4117- 4142.
doi: 10.1002/int.22453
|
16 |
ZHOU F , CHEN T Y . An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance mea-sure for multicriteria decision-making problems[J]. Neural Computing and Applications, 2021, 33 (18): 11821- 11844.
doi: 10.1007/s00521-021-05829-7
|
17 |
DENG Z , WANG J Y . New distance measure for Fermatean fuzzy sets and its application[J]. International Journal of Intelligent Systems, 2022, 37 (3): 1903- 1930.
doi: 10.1002/int.22760
|
18 |
WANG S , STAVROU P A , SKOGLUND M . Generalizations of talagrand inequality for sinkhorn distance using entropy power inequality[J]. Entropy, 2022, 24 (2): 306- 325.
doi: 10.3390/e24020306
|
19 |
SARKAR B , BISWAS A . Pythagorean fuzzy AHP-TOPSIS integrated approach for transportation management through a new distance measure[J]. Soft Computing, 2021, 25 (5): 4073- 4089.
doi: 10.1007/s00500-020-05433-2
|
20 |
CHEN S M , CHANG C H . A novel similarity measure between Atanassov's intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition[J]. Information Sciences, 2015, 291 (10): 96- 114.
|
21 |
GOHAIN B , CHUTIA R , DUTTA P , et al. Two new similarity measures for intuitionistic fuzzy sets and its various applications[J]. International Journal of Intelligent Systems, 2022, 37 (9): 5557- 5596.
doi: 10.1002/int.22802
|
22 |
BORAN F E , AKAY D . A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition[J]. Information Sciences, 2014, 255 (9): 45- 57.
|
23 |
JIANG Q A , JIN X B . A new similarity/distance measure between intuitionistic fuzzy sets based on the transformed isosceles triangles and its applications to pattern recognition[J]. Expert Systems with Applications, 2019, 116 (6): 439- 453.
|
24 |
GARG H , RANI D . Novel distance measures for intuitionistic fuzzy sets based on various triangle centers of isosceles triangular fuzzy numbers and their applications[J]. Expert Systems with Applications, 2022, 191 (6): 116228.
|
25 |
陶希闻, 江文奇. 面向群体共识的三阶段犹豫模糊型信息融合方法研究[J]. 系统工程与电子技术, 2021, 43 (12): 3603- 3613.
|
|
TAO X W , JIANG W Q . Research on three-stage hesitant fuzzy information fusion method for group consensus[J]. Systems Engineering and Electronics, 2021, 43 (12): 3603- 3613.
|
26 |
YAGER R R , ABBASOV A M . Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452.
doi: 10.1002/int.21584
|
27 |
SARKAR B , BISWAS A . Linguistic Einstein aggregation operator-based TOPSIS for multicriteria group decision making in linguistic Pythagorean fuzzy environment[J]. International Journal of Intelligent Systems, 2021, 36 (13): 2825- 2864.
|
28 |
BVYVKÖZKAN G , GÖÇER F , UZTVRK D . A novel pythagorean fuzzy set integrated choquet integral approach for vertical farming technology assessment[J]. Computers & Industrial Engineering, 2021, 158 (6): 107384.
|
29 |
陈六新, 罗南方. 基于前景理论的勾股模糊多属性决策[J]. 系统工程理论与实践, 2020, 40 (3): 726- 735.
|
|
CHEN L X , LUO N F . Pythagorean fuzzy multi-criteria decision-making based on prospect theory[J]. System Engineering-Theory & Practice, 2020, 40 (3): 726- 735.
|
30 |
WAN S P , JIN Z . Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with Pythagorean fuzzy truth degrees[J]. Knowledge & Information Systems, 2018, 55 (2): 437- 466.
|
31 |
LI D Q , ZENG W Y . Distance measure of pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2018, 33 (2): 348- 361.
doi: 10.1002/int.21934
|
32 |
ZENG W Y , LI D Q , YIN Q . Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making[J]. International Journal of Intelligent Systems, 2018, 33 (11): 2236- 2254.
doi: 10.1002/int.22027
|
33 |
ZHOU F , CHEN T Y . Multiple criteria group decision analysis using a Pythagorean fuzzy programming model for multidimensional analysis of preference based on novel distance measures[J]. Computers & Industrial Engineering, 2020, 148 (8): 106670.
|
34 |
ZHANG X L . Multicriteria pythagorean fuzzy decision analysis: a hierarchical qualiflex approach with the closeness index-based ranking methods[J]. Information Sciences, 2016, 330 (7): 104- 124.
|
35 |
YAGER R R . Pythagorean membership grades in multicriteria decision making[J]. IEEE Trans.on Fuzzy System, 2014, 22 (11): 958- 965.
|
36 |
WAN S P , JIN Z , DONG J Y . A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making[J]. Knowledge and Information Systems, 2020, 62 (2): 751- 785.
|
37 |
VLACHOS I K , SERGIADIS G D . Intuitionistic fuzzy information-application to pattern recognition[J]. Pattern Recognition Letters, 2007, 28 (9): 197- 206.
|