1 |
谢君, 廖松, 石章松. 航母作战部署中的舰载机出动规划模型[J]. 系统工程与电子技术, 2020, 42 (1): 128- 132.
|
|
XIE J , LIAO S , SHI Z S . Programming model of flight sortie for an aircraft carrier in transit[J]. Systems Engineering and Electronics, 2020, 42 (1): 128- 132.
|
2 |
刘相春, 卢晶, 黄祥钊. 国外航母舰载机出动回收能力指标体系分析[J]. 中国舰船研究, 2011, 6 (4): 1- 7.
doi: 10.3969/j.issn.1673-3185.2011.04.001
|
|
LIU X C , LU J , HUANG X Z . Analysis on the index system of sortie generation capacity of embarked aircrafts[J]. Chinese Journal of Ship Research, 2011, 6 (4): 1- 7.
doi: 10.3969/j.issn.1673-3185.2011.04.001
|
3 |
王玮, 颜世伟. 美国航母舰载机出动回收能力评估方法[J]. 舰船科学技术, 2016, 38 (7): 140- 142.
|
|
WANG W , YAN S W . Analysis on evaluation method of SGR of US aircraft carrier[J]. Ship Science and Technology, 2016, 38 (7): 140- 142.
|
4 |
崔荣伟, 韩维, 苏析超, 等. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43 (7): 1884- 1893.
|
|
CUI R W , HAN W , SU X C , et al. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage[J]. Systems Engineering and Electronics, 2021, 43 (7): 1884- 1893.
|
5 |
WU Y, TAN W Q, SUN L G, et al. A decision-making method for landing routes of aircraft on the carrier[C]//Proc. of the MATEC Web of Conferences, 2016, 75: 05002.
|
6 |
WU Y , QU X J . Path planning for taxi of carrier aircraft launching[J]. Science China-Technological Sciences, 2013, 56 (6): 1561- 1570.
doi: 10.1007/s11431-013-5222-5
|
7 |
梁天骄, 陈晓明, 杨朝旭, 等. 舰载无人机滑行轨迹控制方法[J]. 北京航空航天大学学报, 2021, 47 (2): 289- 296.
doi: 10.13700/j.bh.1001-5965.2020.0294
|
|
LIANG T J , CHEN X M , YANG Z X , et al. Trajectory control method for unmanned carrier aircraft taxiing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (2): 289- 296.
doi: 10.13700/j.bh.1001-5965.2020.0294
|
8 |
彭雅欣, 黄琦, 余明晖, 等. 基于作战环境配置资源的出动架次率计算模型[J]. 水下无人系统学报, 2020, 28 (6): 642-649, 676.
|
|
PENG Y X , HUANG Q , YU M H , et al. Calculation model of SGR based on operational environment configuration resources[J]. Journal of Unmanned Undersea Systems, 2020, 28 (6): 642-649, 676.
|
9 |
于步兵, 王卓健, 潘洪升. 基于战时飞机出动架次率的保障设备优化配置[J]. 空军工程大学学报(自然科学版), 2018, 19 (3): 30- 35.
|
|
YU B B , WANG Z J , PAN H S . Optimal allocation of support equipments based on aircraft sortie generation rate in the wartime[J]. Journal of Air Force Engineering University(Natural Science Edition), 2018, 19 (3): 30- 35.
|
10 |
郭圣明, 贺筱媛, 吴琳, 等. 基于强制稀疏自编码神经网络的防空作战体系效能回溯分析方法[J]. 中国科学: 信息科学, 2018, 48 (7): 824- 840.
|
|
GUO S M , HE X Y , WU L , et al. Backtracking analysis approach for effectiveness of air defense operation system of systems based on force-sparsed stacked-autoencoding neural networks[J]. Science China: Information Sciences, 2018, 48 (7): 824- 840.
|
11 |
YU Y H . Research progress of crop disease image recognition based on wireless network communication and deep learning[J]. Wireless Communications and Mobile Computing, 2021, 7577349.
|
12 |
AKGUN D , HIZAL S , CAVUSOGLU U . A new DDoS attacks intrusion detection model based on deep learning for cyber security[J]. Computers & Security, 2022, 102748.
|
13 |
VECCHI R , SCARDAPANE S , COMMINIELLO D , et al. Compressing deep-quaternion neural networks with targeted regularisation[J]. CAAI Transactions on Intelligence Technology, 2020, 5 (3): 172- 176.
doi: 10.1049/trit.2020.0020
|
14 |
ILSANG O , YONGDAI K . Nonconvex sparse regularization for deep neural networks and its optimality[J]. Neural Computation, 2021, 34 (2): 476- 517.
|
15 |
TOMOKAZE S , KEN K , YUICHI T . Prediction of hierarchical time series using structured regularization and its application to artificial neural networks[J]. PlosOne, 2020, 15 (11): e0242099.
doi: 10.1371/journal.pone.0242099
|
16 |
NAKAMURA K , SOATTO S , HONG B W . Stochastic batch size for adaptive regularization in deep network optimization[J]. Pattern Recognition, 2022, 129, 108776.
|
17 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2022-06-01]. https://arxiv.org/abs/1412.6980v6.
|
18 |
ALOTAIBI S D , YADAV K , ALENDAILYA N , et al. Deep neural network-based intrusion detection system through PCA[J]. Mathematical Problems in Engineering, 2022, 6488571.
|
19 |
WU H P , LI L . The BP neural network with adam optimizer for predicting audit opinions of listed companies[J]. IAENG International Journal of Computer Science, 2021, 48 (2): 364- 368.
|
20 |
HASHEMI S E , TAVANA M , BAKHSHI M . A new particle swarm optimization algorithm for optimizing big data clustering[J]. SN Computer Science, 2022, 3 (4): 311.
|
21 |
SHI Y H, EBERHART R. A modified particle swarm optimizer[C]//Proc. of the IEEE International Conference on Evolutionary Computation, 1998: 69-73.
|
22 |
LIU Q , LI J , REN H P , et al. All particles driving particle swarm optimization: superior particles pulling plus inferior particles pushing[J]. Knowledge-Based Systems, 2022, 249, 108849.
|
23 |
RESHEF D N , RESHEF Y A , FINUCANE H K , et al. Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524.
|
24 |
XIE W B , LEE Y L , WANG C , et al. Hierarchical clustering supported by reciprocal nearest neighbors[J]. Information Sciences, 2020, 527, 279- 292.
|
25 |
GAYATHRI R G , NAIR J J , KAIMAL M R . Extending full transitive closure to rank removable edges in GN algorithm[J]. Procedia Computer Science, 2016, 93, 995- 1002.
|
26 |
HUANG W C , LI L Q , LIU H Y , et al. Defense resource allocation in road dangerous goods transportation network: a self-contained girvan-newman algorithm and mean variance model combined approach[J]. Reliability Engineering & System Safety, 2021, 215, 107899.
|
27 |
GAO S , ZHAO H , BAI Z P , et al. Combined use of principal component analysis and artificial neural network approach to improve estimates of PM 2.5 personal exposure: a case study on older adults[J]. Science of the Total Environment, 2020, 726, 138533.
|
28 |
WOLD S , ESBENSEN K , GELADI P . Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2 (1/3): 37- 52.
|
29 |
LI P , ZHANG W L , LU C J , et al. Robust kernel principal component analysis with optimal mean[J]. Neural Networks, 2022, 152, 347- 352.
|
30 |
GIRVAN M , NEWMAN M E . Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99 (12): 7821- 7826.
|
31 |
ANDREA A , FRANCESCO D , FRANCESCO I , et al. A survey on modern trainable activation functions[J]. Neural Networks, 2021, 138, 14- 32.
|
32 |
邓嘉宁, 吴宇, 许舒婷, 等. 基于模糊贝叶斯-ANP舰载机出动回收综合评估[J]. 系统工程与电子技术, 2022, 44 (11): 3423- 3432.
|
|
DENG J N , WU Y , XU S T , et al. Comprehensive evaluation of carrier aircraft's dispatch and recovery basedon fuzzy Bayesian-ANP[J]. Systems Engineering and Electronics, 2022, 44 (11): 3423- 3432.
|
33 |
DIETZ D C , JENKINS R C . Analysis of aircraft sortie generation with the use of a fork-join queueing network model[J]. Naval Research Logistics, 1997, 44 (2): 153- 164.
|