系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (11): 3507-3515.doi: 10.12305/j.issn.1001-506X.2023.11.17

• 系统工程 • 上一篇    下一篇

基于指标关联的舰载机出动架次率预测方法

邓嘉宁1, 李海旭2,*, 安强林2, 沙恩来2, 王泽2, 吴宇1   

  1. 1. 重庆大学航空航天学院, 重庆 400044
    2. 中国船舶工业系统工程研究院, 北京 100094
  • 收稿日期:2022-06-08 出版日期:2023-10-25 发布日期:2023-10-31
  • 通讯作者: 李海旭
  • 作者简介:邓嘉宁 (1996—), 男, 硕士研究生, 主要研究方向为复杂系统分析、飞行器控制与导航、神经网络
    李海旭 (1985—), 男, 高级工程师, 硕士, 主要研究方向为舰船航空指挥与保障
    安强林 (1990—), 男, 工程师, 硕士, 主要研究方向为舰船航空指挥与保障
    沙恩来 (1990—), 男, 工程师, 硕士, 主要研究方向为舰船航空指挥与保障
    王泽 (1995—), 男, 助理工程师, 硕士, 主要研究方向为舰船航空指挥与保障
    吴宇 (1987—), 男, 副教授, 博士, 主要研究方向为飞行器动力学建模与轨迹优化、多飞行器(智能体)协同控制、多智能体任务规划、调度与决策、优化算法

Prediction method of carrier aircraft's sortie rate based on index correlation

Jianing DENG1, Haixu LI2,*, Qianglin AN2, Enlai SHA2, Ze WANG2, Yu WU1   

  1. 1. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
    2. China Shipbuilding System Engineering Research Institute, Beijing 100094, China
  • Received:2022-06-08 Online:2023-10-25 Published:2023-10-31
  • Contact: Haixu LI

摘要:

舰载机出动架次率作为衡量航母战斗力的关键指标, 对航母-舰载机系统的安全高效运行十分重要。建立根据实时数据预测当前出动架次率的模型, 将会为航母指挥官的实时调度提供重要参考。首先, 从指标原始数据出发, 基于大数据关联度分析、社区发现及主成分分析法, 确定指标之间的树状关系, 从而建立稀疏深度神经网络。同时, 为了保证更好的训练效果, 选取标准化、L2正则化、Adam优化器作为神经网络的优化算法进行训练。仿真结果表明, 在航母舰载机持续性出动任务下, 所提方法能够实现对舰载机出动架次率的快速、准确、实时预测。

关键词: 舰载机出动架次率, 稀疏深度神经网络, Adam优化器, 数据标准化, 正则化

Abstract:

As a key indicator to measure the combat effectiveness of an aircraft carrier, the carrier aircraft's sortie rate is very important for the safe and efficient operation of the carrier-based aircraft system. Establishing a model that predicts the current sortie rate based on real-time data will provide an important reference for the aircraft carrier commander's real-time scheduling. Firstly, starting from the original data of indicators, based on big data correlation analysis, community discovery, and principal component analysis, the tree-like relationship between indicators is determined, so as to establish a sparse deep neural network. At the same time, in order to ensure better training effect, standardization, L2 regularization, and Adam optimizer are selected as the optimization algorithm of the neural network. The simulation results show that the proposed method can achieve fast, accurate and real-time prediction of the sortie rate of carrier aircraft under the mission of continuous dispatch.

Key words: carrier aircraft's sortie rate, sparse depth neural network, Adam optimizer, date standardization, regularization

中图分类号: