1 |
SOLDI G , GAGLIONE D , FORTI N , et al. Space-based global maritime surveillance. Part Ⅱ: artificial intelligence and data fusion techniques[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36 (9): 30- 42.
doi: 10.1109/MAES.2021.3070884
|
2 |
LEHNER S, BRUSCH S, FRITZ T. Ship surveillance by joint use of SAR and AIS[C]//Proc. of the IEEE Oceans Europe, 2009: 1-5.
|
3 |
BRUSCH S , LEHNER S , FRITZ T , et al. Ship surveillance with TerraSAR-X[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 49 (3): 1092- 1103.
|
4 |
SANTAMARIA C , ALVAREZ M , GREIDANUS H , et al. Mass processing of Sentinel-1 images for maritime surveillance[J]. Remote Sensing, 2017, 9 (7): 678.
doi: 10.3390/rs9070678
|
5 |
PELICH R , CHINI M , HOSTACHE R , et al. Large-scale automatic vessel monitoring based on dual-polarization Sentinel-1 and AIS data[J]. Remote Sensing, 2019, 11 (9): 1078.
doi: 10.3390/rs11091078
|
6 |
UIBOUPIN R, RAUDSEPP U, SIPELGAS L. Detection of oil spills on SAR images, identification of polluters and forecast of the slicks trajectory[C]//Proc. of the IEEE/OES US/EU-Baltic International Symposium, 2008: 1-5.
|
7 |
LONGÉPÉ N , MOUCHE A A , GOACOLOU M , et al. Polluter identification with spaceborne radar imagery, AIS and forward drift modeling[J]. Marine Pollution Bulletin, 2015, 101 (2): 826- 833.
doi: 10.1016/j.marpolbul.2015.08.006
|
8 |
GARELLO R, KERBAOL V. Oil pollution monitoring: An integrated approach[C]//Proc. of the IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, 2017: 1-6.
|
9 |
SONG J, KIM D. Identification of unclassified ships implementing AIS information and SAR image-based ship detection results[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2021: 3557-3560.
|
10 |
TOUZI R , VACHON P W . RCM polarimetric SAR for enhanced ship detection and classification[J]. Canadian Journal of Remote Sensing, 2015, 41 (5): 473- 484.
doi: 10.1080/07038992.2015.1110010
|
11 |
VELOTTO D , BENTES C , TINGS B , et al. First comparison of Sentinel-1 and TerraSAR-X data in the framework of maritime targets detection: South Italy case[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (4): 993- 1006.
doi: 10.1109/JOE.2016.2520216
|
12 |
KUREKIN A A , LOVEDAY B R , CLEMENTS O , et al. Operational monitoring of illegal fishing in Ghana through exploitation of satellite earth observation and AIS data[J]. Remote Sensing, 2019, 11 (3): 293.
doi: 10.3390/rs11030293
|
13 |
LONGÉPÉ N , HAJDUCH G , ARDIANTO R , et al. Completing fishing monitoring with spaceborne vessel detection system (VDS) and automatic identification system (AIS) to assess illegal fishing in Indonesia[J]. Marine Pollution Bulletin, 2018, 131, 33- 39.
doi: 10.1016/j.marpolbul.2017.10.016
|
14 |
ROWLANDS G , BROWN J , SOULE B , et al. Satellite surveillance of fishing vessel activity in the ascension island exclusive economic zone and marine protected area[J]. Marine Policy, 2019, 101, 39- 50.
doi: 10.1016/j.marpol.2018.11.006
|
15 |
International Telecommunication Union. Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band[EB/OL]. [2022-03-18]. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-I!!PDF-E.pdf
|
16 |
BAR-SHALOM Y , FORTMANN T E , CABLE P G . Tracking and data association[J]. Acoustical Society of America Journal, 1990, 87 (2): 918- 919.
doi: 10.1121/1.398863
|
17 |
ACHIRI L, GUIDA R, IERVOLINO P. SAR and AIS fusion for maritime surveillance[C]//Proc. of the IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), 2018: 1-4.
|
18 |
LANG H T , WU S W , XU Y J . Ship classification in SAR images improved by AIS knowledge transfer[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (3): 439- 443.
doi: 10.1109/LGRS.2018.2792683
|
19 |
GRAZIANO M D , RENGA A , MOCCIA A . Integration of automatic identification system (AIS) data and single-channel synthetic aperture radar (SAR) images by SAR-based ship velocity estimation for maritime situational awareness[J]. Remote Sensing, 2019, 11 (19): 2196.
doi: 10.3390/rs11192196
|
20 |
RODGER M , GUIDA R . Classification-aided SAR and AIS data fusion for space-based maritime surveillance[J]. Remote Sensing, 2020, 13 (1): 104.
doi: 10.3390/rs13010104
|
21 |
WANG L W , LI Y , HUANG J , et al. Learning two-branch neural networks for image-text matching tasks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2018, 41 (2): 394- 407.
|
22 |
YAO S S, NIU B N, LIU J Q. Enhancing sampling and counting method for audio retrieval with time-stretch resistance[C]// Proc. of the IEEE Fourth International Conference on Multimedia Big Data (BigMM), 2018: 1-5.
|
23 |
TIAN S , YIN X C , SU Y , et al. A unified framework for tracking based text detection and recognition from web videos[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 40 (3): 542- 554.
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
25 |
DENG Z, HU X, ZHU L, et al. R3net: recurrent residual refinement network for saliency detection[C]//Proc. of the 27th International Joint Conference on Artificial Intelligence, 2018: 684-690.
|
26 |
XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proc. of the International Conference on Machine Learning, 2015: 2048-2057.
|
27 |
FAGHRI F, FLEET D J, KIROS J R, et al. Vse++: improving visual-semantic embeddings with hard negatives[J]. arXiv preprint arXiv: 1707. 05612, 2017.
|
28 |
ZHANG T W , ZHANG X L , LI J W , et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690
|
29 |
WANG K Y, YIN Q Y, WANG W, et al. A comprehensive survey on cross-modal retrieval[J]. arXiv preprint arXiv: 1607. 06215, 2016.
|
30 |
LEE K H, CHEN X, HUA G, et al. Stacked cross attention for image-text matching[C]//Proc. of the European Conference on Computer Vision (ECCV), 2018: 201-216.
|
31 |
YUAN Z Q , ZHANG W K , FU K , et al. Exploring a fine-grained multiscale method for cross-modal remote sensing image retrieval[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 1- 19.
|