系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (11): 3474-3480.doi: 10.12305/j.issn.1001-506X.2023.11.13

• 传感器与信号处理 • 上一篇    下一篇

基于时空记忆解耦RNN的雷暴预测方法

何诗扬1, 汪玲1,*, 朱岱寅1, 钱君2   

  1. 1. 南京航空航天大学电子与信息工程学院/集成电路学院, 江苏 南京 211106
    2. 中国航空工业集团雷华电子技术研究所, 江苏 无锡 214063
  • 收稿日期:2022-08-26 出版日期:2023-10-25 发布日期:2023-10-31
  • 通讯作者: 汪玲
  • 作者简介:何诗扬 (1999—), 女, 硕士研究生, 主要研究方向为气象雷达信号处理
    汪玲 (1977—), 女, 教授, 博士, 主要研究方向为雷达信号处理、图像处理
    朱岱寅 (1974—), 男, 教授, 博士, 主要研究方向为雷达系统、雷达信号处理、雷达成像技术
    钱君 (1985—), 男, 高级工程师, 学士, 主要研究方向为机载气象雷达系统
  • 基金资助:
    工信部民机专项(MJ-2018-S-28)

Thunderstorm prediction method based on spatiotemporal memory decoupling RNN

Shiyang HE1, Ling WANG1,*, Daiyin ZHU1, Jun QIAN2   

  1. 1. College of Electronic and Information Engineering/College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. Leihua Electronic Technology Research Institute, Aviation Industry Corporation of China, Wuxi 214063, China
  • Received:2022-08-26 Online:2023-10-25 Published:2023-10-31
  • Contact: Ling WANG

摘要:

使用循环神经网络进行雷暴的外推预测, 利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory, ST-LSTM)单元, 加入了记忆解耦结构以分离时间记忆和空间记忆状态。在香港天文台(Hong Kong Observatorg, HKO)的HKO-7数据集的基础上筛选雷暴数据, 构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法, 虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络, 雷暴回波外推的预测效果更好, 尤其是强回波的预测效果更好。

关键词: 循环神经网络, 雷暴预测, 气象雷达, 深度学习

Abstract:

The recurrent neural network (RNN) is applied to the thunderstorm prediction, and the prediction results in the next hour are given by using the historical reflectivity factor data of weather radar. The core of the network is spatiotemporal long short-term memory (ST-LSTM) unit, and a memory decoupling structure is added to separate temporal memory and spatial memory states. The training and testing datasets are constructed from thunderstorm data, which are sifted through the HKO-7 dataset of the Hong Kong Observatory. The results of ST-LSTM network with memory decoupling structure and without memory decoupling structure, are compared with the MIM (memory in memory) network and the traditional centroid tracking method. Numerical comparison of prediction score factor and individual case analysis results show that the prediction neural network is higher than the centroid tracking method in probability of detection success and critical success index, and the false alarm ratio is lower than the centroid tracking method. The prediction factor score of the network with memory decoupling structure is higher than that of the conventional ST-LSTM network and the MIM network, and the prediction effect of strong echo is better.

Key words: recurrent neural network (RNN), thunderstorm prediction, weather radar, deep learning

中图分类号: