系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (11): 3465-3473.doi: 10.12305/j.issn.1001-506X.2023.11.12

• 传感器与信号处理 • 上一篇    下一篇

基于深度学习模型的SAR图像间歇采样转发干扰检测

陶臣嵩, 陈思伟, 肖顺平   

  1. 国防科技大学电子科学学院电子信息系统复杂电磁环境效应国家重点实验室, 湖南长沙 410073
  • 收稿日期:2022-01-20 出版日期:2023-10-25 发布日期:2023-10-31
  • 通讯作者: 陈思伟
  • 作者简介:陶臣嵩(1993—), 男, 博士研究生, 主要研究方向为成像雷达人造目标检测
    陈思伟(1984—), 男, 特聘教授, 博士, 主要研究方向为极化雷达成像、目标识别、电子对抗
    肖顺平(1964—), 男, 教授, 博士, 主要研究方向为雷达极化信息处理、电子信息系统仿真评估技术、雷达目标识别
  • 基金资助:
    国家自然科学基金(61771480);湖南省自然科学基金(2020JJ2034);湖湘青年英才项目(2019RS2025)

SAR image interrupted sampling repeater jamming detection based on deep learning models

Chensong TAO, Siwei CHEN, Shunping XIAO   

  1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, School of Electronic Science, National University of Defense Technology, Changsha 410073, China
  • Received:2022-01-20 Online:2023-10-25 Published:2023-10-31
  • Contact: Siwei CHEN

摘要:

间歇采样转发干扰(interrupted sampling repeater jamming, ISRJ)利用合成孔径雷达的匹配滤波特性, 在其图像中产生间隔分布的假目标, 对目标检测等造成欺骗效果, 故针对ISRJ的检测与抑制具有重大意义, 而现阶段相关研究主要集中在信号域。对此, 在图像域中开展ISRJ检测研究。首先将实测数据与仿真干扰相结合, 基于不同实测场景与仿真参数构建ISRJ样本; 其次针对假目标间隔分布的特点, 选用深度学习检测领域具有代表性的“两阶段”与“单阶段”模型; 再次, 使用单一场景的ISRJ样本对模型进行训练, 再利用训练好的模型对其他场景的样本进行测试; 最终, 得到ISRJ检测结果。基于MiniSAR数据的实验表明, 对于不同类别、不同场景以及不同参数的ISRJ样本, 所用深度学习模型能够达到95.75%的平均总体检测精度, 具有很强的泛化能力。此外, 对于尺寸大小为501像素×501像素的样本, 上述模型的最少检测用时为0.035 s。

关键词: 合成孔径雷达, 间歇采样转发干扰, 干扰检测, 深度学习模型

Abstract:

Interrupted sampling repeater jamming (ISRJ) takes advantage of the matched filtering characteristic of synthetic aperture radar (SAR) and causes the fake targets with the interval distribution characteristic in SAR image. These fake targets are a kind of deception for target detection. So, it is quite significant to detect and restrain the ISRJ. However, the corresponding researches mainly focus on the signal domain at the present stage. Therefore, this work researches on the ISRJ detection in the image domain. Firstly, by combining the measured data with the simulated jamming, ISRJ samples are produced and established based on different measured scenes and simulated parameters. Secondly for the interval distribution characteristic of the fake targets, the two-stage and one-stage models, which are representative in the field of deep learning detection are adopted. Thirdly, ISRJ samples from one single scene are used for the models training, and the samples from the other scenes are tested by the well-trained models. Finally, the ISRJ detection results are obtained. Based on MiniSAR data, the experiment verifies that for the ISRJ samples with different kinds, scenes, and parameters, the adopted deep learning models are able to achieve the averaged total detection accuracy of 95.75%. They are with the good generalization abilities. Moreover, for the sample with the size of 501 pixels×501 pixels, the least time cost of these models is 0.035 s.

Key words: synthetic aperture radar (SAR), interrupted sampling repeater jamming (ISRJ), jamming detection, deep learning models

中图分类号: