1 |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
|
|
BAO Z , XING M D , WANG T . Radar imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
|
2 |
CUMMING I G, WONG F H. 合成孔径雷达成像—算法与实现[M]. 洪文, 胡东辉等译. 北京: 电子工业出版社, 2007.
|
|
CUMMING I G, WONG F H. Digital processing of synthetic aperture radar date: algorithm and implementation[M]. Translated by HONG W, HU D H, et al. Beijing: Publishing House of Electronics Industry, 2007.
|
3 |
FAROOP A , LIMEBER D J . Optimal trajectory regulation for radar imaging guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (4): 1076- 1092.
doi: 10.2514/1.31441
|
4 |
HODGSON J A, LEE D W. Terminal guidance using a Doppler beam shapening radar[C]//Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2003: 1-11.
|
5 |
ZHAO H Z, XIE H Y, FU Q. Azimuth resolution acquisition through trajectory optimization for a SAR seeker[C]//Proc. of the Asian-Pacific Conference on Synthetic Aperture Radar, 2009: 55-59.
|
6 |
郭媛, 索志勇, 王婷婷, 等. 弹载SAR系统参数优化设计方法[J]. 系统工程与电子技术, 2020, 42 (7): 1478- 1483.
|
|
GUO Y , SUO Z Y , WANG T T , et al. Parameter optimization design method of missile-borne SAR[J]. Systems Engineering and Electronics, 2020, 42 (7): 1478- 1483.
|
7 |
邓欢, 李亚超. 弹载下降段大前斜聚束SAR成像时序设计[J]. 系统工程与电子技术, 2016, 38 (5): 1032- 1038.
|
|
DENG H , LI Y C . Sequential design for highly squinted missile-borne spotlight SAR imaging on descent trajectory[J]. Systems Engineering and Electronics, 2016, 38 (5): 1032- 1038.
|
8 |
NIES H , LOFFELD O , NATROSHVILL K . Analysis and focusing of bistatic airborne SAR data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (11): 3342- 3349.
doi: 10.1109/TGRS.2007.900689
|
9 |
SUN Z C , WU J J , PEI J F . Inclined geosynchronous spaceborne-airborne bistatic SAR: performance analysis and mission design[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (1): 343- 357.
doi: 10.1109/TGRS.2015.2457034
|
10 |
AN H Y, WU J J, SUN Z C, et al. Azimuth ambiguity suppression for multichannel geosynchronous spaceborne-airborne bistatic SAR[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 3663-3666.
|
11 |
YANG J, HUANG Y, YANG H, et al. A first experiment of airborne bistatic forward-looking SAR- Preliminary results[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 4202-4204.
|
12 |
SUN Z C, WU J J, HUANG Y, et al. Performance analysis and mission design for inclined geosynchronous spaceborne-airborne bistatic SAR[C]//Proc. of the IEEE Radar Conference, 2015: 1177-1181.
|
13 |
WANG R , LOFFELD O , NEO Y L , et al. Focusing bistatic SAR data in airborne/stationary configuration[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48 (1): 452- 465.
doi: 10.1109/TGRS.2009.2027700
|
14 |
孟自强, 李亚超, 汪宗福, 等. 弹载双基前视SAR俯冲段弹道设计方法[J]. 系统工程与电子技术, 2015, 37 (4): 768- 774.
|
|
MENG Z Q , LI Y C , WANG Z F , et al. Design method of MBFL-SAR trajectory during terminal diving period[J]. Systems Engineering and Electronics, 2015, 37 (4): 768- 774.
|
15 |
CARDILLO G P. On the use of the gradient to determine bistatic SAR resolution[C]//Proc. of the Antennas and Propagation Society International Symposium, 1990: 1032-1035.
|